Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nucleic Acids Res ; 52(5): 2648-2671, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38180812

RESUMO

Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.


Assuntos
Metiltransferases , Neuroblastoma , RNA Longo não Codificante , Humanos , Adenina/análogos & derivados , Metiltransferases/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estruturas R-Loop , RNA Longo não Codificante/metabolismo , Telômero/genética , Homeostase do Telômero
2.
Am J Med Genet A ; : e63812, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990105

RESUMO

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by pathogenic variants in FBN1, with a hitherto unknown association with cancer. Here, we present two females with MFS who developed pediatric neuroblastoma. Patient 1 presented with neonatal MFS and developed an adrenal neuroblastoma with unfavorable tumor genetics at 10 months of age. Whole genome sequencing revealed a germline de novo missense FBN1 variant (NP_000129.3:p.(Asp1322Asn)), resulting in intron 32 inclusion and exon 32 retention. Patient 2 was diagnosed with classic MFS, caused by a germline de novo frameshift variant in FBN1 (NP_000129.3:p.(Cys805Ter)). At 18 years, she developed high-risk neuroblastoma with a somatic ALK pathogenic variant (NP_004295.2:p.(Arg1275Gln)). We identified 32 reported cases of MFS with cancer in PubMed, yet none with neuroblastoma. Among patients, we observed an early cancer onset and high frequency of MFS complications. We also queried cancer databases for somatic FBN1 variants, finding 49 alterations reported in PeCan, and variants in 2% of patients in cBioPortal. In conclusion, we report the first two patients with MFS and neuroblastoma and highlight an early age at cancer diagnosis in reported patients with MFS. Further epidemiological and functional studies are needed to clarify the growing evidence linking MFS and cancer.

3.
Cancer Cell Int ; 21(1): 170, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726762

RESUMO

BACKGROUND: Neuroblastoma is a childhood neural crest tumor showing large clinical and genetic heterogeneity, one form displaying 11q-deletion is very aggressive. It has been shown that 11q-deletion results in decreased expression of DLG2, a gene residing in the deleted region. DLG2 has a number of different isoforms with the main difference is the presence or absence of a L27 domain. The L27 domain containing DLG proteins can form complexes with CASK/MPP and LIN7 protein family members, which will control cell polarity and signaling. METHODS: We evaluated the DLG gene family and the LIN7 gene family for their expression in differently INSS staged neuroblastoma from publically available data and primary tumors, we included two distinct DLG1 and DLG2 N-terminal transcript isoforms encoding L27 domains for their expression. Functionality of DLG2 isoforms and of LIN7A were evaluated in the 11q-deleted neuroblastoma cell line SKNAS. RESULTS: In neuroblastoma only two DLG2 isoforms were expressed: isoform 2 and isoform 7/8. Using the array data we could determine that higher expression of DLG members that contain L27 domains correlated to better survival and prognosis. Whilst DLG1 showed a decrease in both isoforms with increased INSS stage, only the full length L27 containing DLG2 transcripts DLG2-isoform 7/8 showed a decrease in expression in high stage neuroblastoma. We could show that the protein encoded by DLG2-isoform 7 could bind to LIN7A, and increased DLG2-isoform 7 gene expression increased the expression of LIN7A, this reduced neuroblastoma cell proliferation and viability, with increased BAX/BCL2 ratio indicating increased apoptosis. CONCLUSION: We have provided evidence that gene expression of the L27 domain containing DLG2-isoform 7/8 but not L27 domain lacking DLG2-isoform 2 is disrupted in neuroblastoma, in particular in the aggressive subsets of tumors. The presence of the complete L27 domain allows for the binding to LIN7A, which will control cell polarity and signaling, thus affecting cancer cell viability.

4.
Genes Chromosomes Cancer ; 59(1): 50-57, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31340081

RESUMO

Gain of chromosome arm 2p is a previously described entity in neuroblastoma (NB). This genomic address is home to two important oncogenes in NB-MYCN and anaplastic lymphoma kinase (ALK). MYCN amplification is a critical prognostic factor coupled with poor prognosis in NB. Mutation of the ALK receptor tyrosine kinase has been described in both somatic and familial NB. Here, ALK activation occurs in the context of the full-length receptor, exemplified by activating point mutations in NB. ALK overexpression and activation, in the absence of genetic mutation has also been described in NB. In addition, the recently identified ALK ligand ALKAL2 (previously described as FAM150B and AUGα) is also found on the distal portion of 2p, at 2p25. Here we analyze 356 NB tumor samples and discuss observations indicating that gain of 2p has implications for the development of NB. Finally, we put forward the hypothesis that the effect of 2p gain may result from a combination of MYCN, ALK, and the ALK ligand ALKAL2.

5.
Proc Natl Acad Sci U S A ; 114(32): E6603-E6612, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739902

RESUMO

Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3ß-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN-driven neuroblastoma growth in TH-MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.


Assuntos
Neuroblastoma , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Camundongos Nus , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Inibidores de Proteínas Quinases , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Associadas a rho/metabolismo
6.
Scand J Gastroenterol ; 54(12): 1441-1447, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31814461

RESUMO

Background: Intestinal degenerative neuropathy without extra-intestinal involvement occurs as familial forms (FIDN) but the genetics behind is unknown. We studied a Swedish family with autosomal dominant disease and several cases of chronic intestinal pseudo-obstruction (CIP).Methods: We included 33 members of a family sharing a male ancestor. Chronic intestinal symptoms including diarrhoea occurred in 11, four had severe CIP. DNA was analysed with SNP-microarray (Affymetrix), linkage (Allegro Software) and gene dosage (CNAG 3.0).Results: Genetic linkage was found to the short arm of Ch9 to a 9.7 Mb region with 45 protein-coding genes, 22 of which were duplicated (1.2 Mb duplication) (dup(9)(p21.3) with breaking point in the FOCAD-gene. Lod score for the region was 3.4. Fourteen subjects were duplication carriers including all 11 subjects having severe chronic symptoms/CIP. Nineteen subjects had no duplication. The occurrence of gastrointestinal symptoms in the family was strongly linked to duplication carrier-ship (p = .0005). The two branches of the family had separate maternal ancestors (A and B). Including the previous generation, severe disease (overt CIP and/or death from intestinal failure) was assessed to occur in 100% (5/5) of duplication carriers in branch A and in 21% (3/14) in branch B (p = .005). In branch B the onset of symptoms was later (median 38 vs. 24 yrs) and three duplication carriers were symptom-free.Conclusions: In this family with autosomal dominant hereditary intestinal neuropathy, the disorder is linked to a 9.7 Mb region in Ch9 including a 1.2 Mb duplication. There is a significant difference in disease expressivity between family branches, seemingly related to separate maternal ancestors.


Assuntos
Cromossomos Humanos Par 9 , Diarreia , Transtornos Heredodegenerativos do Sistema Nervoso , Pseudo-Obstrução Intestinal , Intestinos , Proteínas do Tecido Nervoso/genética , Adulto , Doença Crônica , Diarreia/diagnóstico , Diarreia/etiologia , Família , Feminino , Duplicação Gênica , Loci Gênicos , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico , Transtornos Heredodegenerativos do Sistema Nervoso/epidemiologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Pseudo-Obstrução Intestinal/epidemiologia , Pseudo-Obstrução Intestinal/etiologia , Pseudo-Obstrução Intestinal/fisiopatologia , Intestinos/inervação , Intestinos/fisiopatologia , Masculino , Linhagem , Índice de Gravidade de Doença , Suécia/epidemiologia
7.
Proc Natl Acad Sci U S A ; 112(26): 8070-5, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080408

RESUMO

The majority of solid tumors are presented with an inflammatory microenvironment. Proinflammatory lipid mediators including prostaglandin E2 (PGE2) contribute to the establishment of inflammation and have been linked to tumor growth and aggressiveness. Here we show that high-risk neuroblastoma with deletion of chromosome 11q represents an inflammatory subset of neuroblastomas. Analysis of enzymes involved in the production of proinflammatory lipid mediators showed that 11q-deleted neuroblastoma tumors express high levels of microsomal prostaglandin E synthase-1 (mPGES-1) and elevated levels of PGE2. High mPGES-1 expression also corresponded to poor survival of neuroblastoma patients. Investigation of the tumor microenvironment showed high infiltration of tumor-promoting macrophages with high expression of the M2-polarization markers CD163 and CD206. mPGES-1-expressing cells in tumors from different subtypes of neuroblastoma showed differential expression of one or several cancer-associated fibroblast markers such as vimentin, fibroblast activation protein α, α smooth muscle actin, and PDGF receptor ß. Importantly, inhibition of PGE2 production with diclofenac, a nonselective COX inhibitor, resulted in reduced tumor growth in an in vivo model of 11q-deleted neuroblastoma. Collectively, these results suggest that PGE2 is involved in the tumor microenvironment of specific neuroblastoma subgroups and indicate that therapeutic strategies using existing anti-inflammatory drugs in combination with current treatment should be considered for certain neuroblastomas.


Assuntos
Dinoprostona/metabolismo , Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Neuroblastoma/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Deleção Cromossômica , Cromossomos Humanos Par 11 , Modelos Animais de Doenças , Humanos , Inflamação/enzimologia , Inflamação/patologia , Oxirredutases Intramoleculares/genética , Camundongos , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Prostaglandina-E Sintases , RNA Mensageiro/genética , Microambiente Tumoral
8.
Int J Cancer ; 139(1): 153-63, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26910568

RESUMO

Amplification of MYCN is the signature genetic aberration of 20-25% of neuroblastoma and a stratifying marker associated with aggressive tumor behavior. The detection of heterogeneous MYCN amplification (hetMNA) poses a diagnostic dilemma due to the uncertainty of its relevance to tumor behavior. Here, we aimed to shed light on the genomic background which permits hetMNA in neuroblastoma and tied the occurrence to other stratifying markers and disease outcome. We performed SNP analysis using Affymetrix Cytoscan HD arrays on 63 samples including constitutional DNA, tumor, bone marrow and relapse samples of 26 patients with confirmed hetMNA by MYCN-FISH. Tumors of patients ≤18m were mostly aneuploid with numeric chromosomal aberrations (NCAs), presented a prominent MNA subclone and carried none or a few segmental chromosomal aberrations (SCAs). In older patients, tumors were mostly di- or tetraploid, contained a lower number of MNA cells and displayed a multitude of SCAs including concomitant 11q deletions. These patients often suffered disease progression, tumor dissemination and relapse. Restricted to aneuploid tumors, we detected chromosomes with uniparental di- or trisomy (UPD/UPT) in almost every sample. UPD11 was exclusive to tumors of younger patients whereas older patients featured UPD14. In this study, the MNA subclone appears to be constraint by the tumor environment and thus less relevant for tumor behavior in aggressive tumors with a high genomic instability and many segmental aberrations. A more benign tumor background and lower tumor stage may favor an outgrowth of the MNA clone but tumors generally responded better to treatment.


Assuntos
Amplificação de Genes , Heterogeneidade Genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Adolescente , Aneuploidia , Criança , Pré-Escolar , Aberrações Cromossômicas , Deleção Cromossômica , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/patologia , Polimorfismo de Nucleotídeo Único
9.
Genes Chromosomes Cancer ; 54(2): 99-109, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25251827

RESUMO

Anaplastic lymphoma kinase (ALK) has been demonstrated to be deregulated in sporadic as well as in familiar cases of neuroblastoma (NB). Whereas ALK-fusion proteins are common in lymphoma and lung cancer, there are few reports of ALK rearrangements in NB indicating that ALK mainly exerts its oncogenic capacity via activating mutations and/or overexpression in this tumor type. In this study, 332 NB tumors and 13 cell lines were screened by high resolution single nucleotide polymorphism microarray. Gain of 2p was detected in 23% (60/332) of primary tumors and 46% (6/13) of cell lines, while breakpoints at the ALK locus were detected in four primary tumors and two cell lines. These were further analyzed by next generation sequencing and a targeted enrichment approach. Samples with both ALK and MYCN amplification displayed complex genomic rearrangements with multiple breakpoints within the amplicon. None of the translocations characterized in primary NB tumors are likely to result in a chimeric protein. However, immunohistochemical analysis reveals high levels of phosphorylated ALK in these samples despite lack of initial exons, possibly due to alternative transcription initiation sites. Both ALK proteins predicted to arise from such alterations and from the abnormal ALK exon 4-11 deletion observed in the CLB-BAR cell line show strong activation of downstream targets STAT3 and extracellular signal-regulated kinase (ERK) when expressed in PC12 cells. Taken together, our data indicate a novel, although rare, mechanism of ALK activation with implications for NB tumorigenesis.


Assuntos
Rearranjo Gênico , Neuroblastoma/genética , Receptores Proteína Tirosina Quinases/genética , Translocação Genética , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular Tumoral , Pontos de Quebra do Cromossomo , Éxons , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neuroblastoma/metabolismo , Células PC12 , Polimorfismo de Nucleotídeo Único , Ratos , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
10.
Genes Chromosomes Cancer ; 53(8): 703-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24801985

RESUMO

The DNA repair gene MGMT (O-6-methylguanine-DNA methyltransferase) is important for maintaining normal cell physiology and genomic stability. Alterations in MGMT play a critical role in the development of several types of cancer, including glioblastoma, lung cancer, and colorectal cancer. The purpose of this study was to explore the function of genetic alterations in MGMT and their connection with familial melanoma (FM). Using multiplex ligation-dependent probe amplification, we identified a deletion that included the MGMT gene in one of 64 families with a melanoma predisposition living in western Sweden. The mutation segregated with the disease as a heterozygous deletion in blood-derived DNA, but a homozygous deletion including the promoter region and exon 1 was seen in tumor tissue based on Affymetrix 500K and 6.0 arrays. By sequence analysis of the MGMT gene in the other 63 families with FM from western Sweden, we identified four common polymorphisms, nonfunctional, as predominantly described in previous studies. We conclude that inherited alterations in the MGMT gene might be a rare cause of FM, and we suggest that MGMT contributes to melanoma predisposition.


Assuntos
Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Deleção de Genes , Melanoma/genética , Neoplasias Cutâneas/genética , Proteínas Supressoras de Tumor/genética , Éxons , Predisposição Genética para Doença , Humanos , Polimorfismo Genético , Regiões Promotoras Genéticas , Suécia , Melanoma Maligno Cutâneo
11.
Lancet Reg Health Eur ; 39: 100881, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38803632

RESUMO

Background: Childhood cancer predisposition (ChiCaP) syndromes are increasingly recognized as contributing factors to childhood cancer development. Yet, due to variable availability of germline testing, many children with ChiCaP might go undetected today. We report results from the nationwide and prospective ChiCaP study that investigated diagnostic yield and clinical impact of integrating germline whole-genome sequencing (gWGS) with tumor sequencing and systematic phenotyping in children with solid tumors. Methods: gWGS was performed in 309 children at diagnosis of CNS (n = 123, 40%) or extracranial (n = 186, 60%) solid tumors and analyzed for disease-causing variants in 189 known cancer predisposing genes. Tumor sequencing data were available for 74% (227/309) of patients. In addition, a standardized clinical assessment for underlying predisposition was performed in 95% (293/309) of patients. Findings: The prevalence of ChiCaP diagnoses was 11% (35/309), of which 69% (24/35) were unknown at inclusion (diagnostic yield 8%, 24/298). A second-hit and/or relevant mutational signature was observed in 19/21 (90%) tumors with informative data. ChiCaP diagnoses were more prevalent among patients with retinoblastomas (50%, 6/12) and high-grade astrocytomas (37%, 6/16), and in those with non-cancer related features (23%, 20/88), and ≥2 positive ChiCaP criteria (28%, 22/79). ChiCaP diagnoses were autosomal dominant in 80% (28/35) of patients, yet confirmed de novo in 64% (18/28). The 35 ChiCaP findings resulted in tailored surveillance (86%, 30/35) and treatment recommendations (31%, 11/35). Interpretation: Overall, our results demonstrate that systematic phenotyping, combined with genomics-based diagnostics of ChiCaP in children with solid tumors is feasible in large-scale clinical practice and critically guides personalized care in a sizable proportion of patients. Funding: The study was supported by the Swedish Childhood Cancer Fund and the Ministry of Health and Social Affairs.

12.
Int J Cancer ; 133(10): 2351-61, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23661597

RESUMO

Neuroblastoma is the most common and deadly tumor of childhood, where new therapy options for patients with high-risk disease are highly warranted. Human cytomegalovirus (HCMV) is prevalent in the human population and has recently been implicated in different cancer forms where it may provide mechanisms for oncogenic transformation, oncomodulation and tumor cell immune evasion. Here we show that the majority of primary neuroblastomas and neuroblastoma cell lines are infected with HCMV. Our analysis show that HCMV immediate-early protein was expressed in 100% of 36 primary neuroblastoma samples, and HCMV late protein was expressed in 92%. However, no infectious virus was detected in primary neuroblastoma tissue extracts. Remarkably, all six human neuroblastoma cell lines investigated contained CMV DNA and expressed HCMV proteins. HCMV proteins were expressed in neuroblastoma cells expressing the proposed stem cell markers CD133 and CD44. When engrafted into NMRI nu/nu mice, human neuroblastoma cells expressed HCMV DNA, RNA and proteins but did not produce infectious virus. The HCMV-specific antiviral drug valganciclovir significantly reduced viral protein expression and cell growth both in vitro and in vivo. These findings indicate that HCMV is important for the pathogenesis of neuroblastoma and that anti-viral therapy may be a novel adjuvant treatment option for children with neuroblastoma.


Assuntos
Infecções por Citomegalovirus/complicações , Citomegalovirus/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/virologia , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Criança , Pré-Escolar , Infecções por Citomegalovirus/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Feminino , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Glicoproteínas/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Peptídeos/metabolismo , Prevalência , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
13.
BMC Med Genet ; 14: 102, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24088605

RESUMO

BACKGROUND: Chromosomal instability is a hallmark of human cancer caused by errors in mitotic control and chromosome segregation. STAG2 encodes a subunit of the cohesion complex that participates in mitotic chromatid separation and was recently found to show low expression and inactivating mutations in Ewing's sarcoma, melanoma and glioblastoma.In the childhood tumor neuroblastoma (NB) segmental chromosomal alterations are associated with poor prognosis whereas tumors displaying whole chromosome gains and losses have a much better prognosis. METHOD: As the genetic contribution to aneuploidy is unknown in NB, we investigated the presence of STAG2 mutations through sequence analysis of all 33 coding exons in 37 primary NB tumors. RESULTS AND CONCLUSION: As no STAG2 mutation was detected in this study, we conclude that inactivating mutation of STAG2 is not likely causative to neuroblastoma aneuploidy.


Assuntos
Aneuploidia , Antígenos Nucleares/genética , Neoplasias do Sistema Nervoso/genética , Neuroblastoma/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Éxons , Humanos , Neoplasias do Sistema Nervoso/patologia , Neuroblastoma/patologia , Mutação Puntual , Análise de Sequência de DNA
14.
BMC Cancer ; 13: 231, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23656755

RESUMO

BACKGROUND: Aggressive neuroblastoma remains a significant cause of childhood cancer death despite current intensive multimodal treatment protocols. The purpose of the present work was to characterize the genetic and clinical diversity of such tumors by high resolution arrayCGH profiling. METHODS: Based on a 32K BAC whole-genome tiling path array and using 50-250K Affymetrix SNP array platforms for verification, DNA copy number profiles were generated for 34 consecutive high-risk or lethal outcome neuroblastomas. In addition, age and MYCN amplification (MNA) status were retrieved for 112 unfavorable neuroblastomas of the Swedish Childhood Cancer Registry, representing a 25-year neuroblastoma cohort of Sweden, here used for validation of the findings. Statistical tests used were: Fisher's exact test, Bayes moderated t-test, independent samples t-test, and correlation analysis. RESULTS: MNA or segmental 11q loss (11q-) was found in 28/34 tumors. With two exceptions, these aberrations were mutually exclusive. Children with MNA tumors were diagnosed at significantly younger ages than those with 11q- tumors (mean: 27.4 vs. 69.5 months; p=0.008; n=14/12), and MNA tumors had significantly fewer segmental chromosomal aberrations (mean: 5.5 vs. 12.0; p<0.001). Furthermore, in the 11q- tumor group a positive correlation was seen between the number of segmental aberrations and the age at diagnosis (Pearson Correlation 0.606; p=0.037). Among nonMNA/non11q- tumors (n=6), one tumor displayed amplicons on 11q and 12q and three others bore evidence of progression from low-risk tumors due to retrospective evidence of disease six years before diagnosis, or due to tumor profiles with high proportions of numerical chromosomal aberrations. An early age at diagnosis of MNA neuroblastomas was verified by registry data, with an average of 29.2 months for 43 cases that were not included in the present study. CONCLUSION: MNA and segmental 11q loss define two major genetic variants of unfavorable neuroblastoma with apparent differences in their pace of tumor evolution and in genomic integrity. Other possible, but less common, routes in the development of aggressive tumors are progression of low-risk infant-type lesions, and gene amplifications other than MYCN. Knowledge on such nosological diversity of aggressive neuroblastoma might influence future strategies for therapy.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 12/genética , Perfilação da Expressão Gênica , Neuroblastoma/genética , Deleção de Sequência , Adolescente , Fatores Etários , Sequência de Bases , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Amplificação de Genes , Humanos , Lactente , Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas/genética , Sistema de Registros , Suécia
15.
Brain ; 135(Pt 6): 1682-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22577218

RESUMO

Hereditary myopathy with early respiratory failure and extensive myofibrillar lesions has been described in sporadic and familial cases and linked to various chromosomal regions. The mutated gene is unknown in most cases. We studied eight individuals, from three apparently unrelated families, with clinical and pathological features of hereditary myopathy with early respiratory failure. The investigations included clinical examination, muscle histopathology and genetic analysis by whole exome sequencing and single nucleotide polymorphism arrays. All patients had adult onset muscle weakness in the pelvic girdle, neck flexors, respiratory and trunk muscles, and the majority had prominent calf hypertrophy. Examination of pulmonary function showed decreased vital capacity. No signs of cardiac muscle involvement were found. Muscle histopathological features included marked muscle fibre size variation, fibre splitting, numerous internal nuclei and fatty infiltration. Frequent groups of fibres showed eosinophilic inclusions and deposits. At the ultrastructural level, there were extensive myofibrillar lesions with marked Z-disc alterations. Whole exome sequencing in four individuals from one family revealed a missense mutation, g.274375T>C; p.Cys30071Arg, in the titin gene (TTN). The mutation, which changes a highly conserved residue in the myosin binding A-band titin, was demonstrated to segregate with the disease in all three families. High density single nucleotide polymorphism arrays covering the entire genome demonstrated sharing of a 6.99 Mb haplotype, located in chromosome region 2q31 including TTN, indicating common ancestry. Our results demonstrate a novel and the first disease-causing mutation in A-band titin associated with hereditary myopathy with early respiratory failure. The typical histopathological features with prominent myofibrillar lesions and inclusions in muscle and respiratory failure early in the clinical course should be incentives for analysis of TTN mutations.


Assuntos
Saúde da Família , Proteínas Musculares/genética , Doenças Musculares/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Quinases/genética , Insuficiência Respiratória/genética , Actinas/metabolismo , Adulto , Idoso , Conectina , Extremidades/patologia , Feminino , Estudos de Associação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/complicações , Moléculas de Adesão de Célula Nervosa/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Insuficiência Respiratória/complicações , Suécia
16.
Proc Natl Acad Sci U S A ; 107(9): 4323-8, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20145112

RESUMO

Analysis of chromosomal aberrations is used to determine the prognosis of neuroblastomas (NBs) and to aid treatment decisions. MYCN amplification (MNA) alone is an incomplete poor prognostic factor, and chromosome 11q status has recently been included in risk classification. We analyzed 165 NB tumors using high-density SNP microarrays and specifically compared the high-risk groups defined by MNA (n = 37) and 11q-deletion (n = 21). Median patient age at diagnosis was 21 months for MNA tumors and 42 months for 11q-deletion tumors, and median survival time after diagnosis was 16 months for MNA and 40 months for 11q deletion. Overall survival (at 8 years) was approximately 35% in both groups. MNA and 11q deletion were almost mutually exclusive; only one case harbored both aberrations. The numbers of segmental aberrations differed significantly; the MNA group had a median of four aberrations, whereas the 11q-deletion group had 12. The high frequency of chromosomal breaks in the 11q-deletion group is suggestive of a chromosomal instability phenotype gene located in 11q; one such gene, H2AFX, is located in 11q23.3 (within the 11q-deletion region). Furthermore, in the groups with segmental aberrations without MNA or 11q deletion, the tumors with 17q gain have worse prognosis than those with segmental aberrations without 17q gain, which have a favorable outcome. This study has implications for therapy in different risk groups and stresses that genome-wide microarray analyses should be included in clinical management to fully evaluate risk, aid diagnosis, and guide treatment.


Assuntos
Instabilidade Cromossômica , Cromossomos Humanos Par 11 , Neuroblastoma/genética , Histonas/genética , Humanos , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Cancers (Basel) ; 15(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136279

RESUMO

Tumor cells are hallmarked by their capacity to undergo unlimited cell divisions, commonly accomplished either by mechanisms that activate TERT or through the alternative lengthening of telomeres pathway. Neuroblastoma is a heterogeneous pediatric cancer, and the aim of this study was to characterize telomere maintenance mechanisms in a high-risk neuroblastoma cohort. All tumor samples were profiled with SNP microarrays and, when material was available, subjected to whole genome sequencing (WGS). Telomere length was estimated from WGS data, samples were assayed for the ALT biomarker c-circles, and selected samples were subjected to methylation array analysis. Samples with ATRX aberration in this study were positive for c-circles, whereas samples with either MYCN amplification or TERT re-arrangement were negative for c-circles. Both ATRX aberrations and TERT re-arrangement were enriched in 11q-deleted samples. An association between older age at diagnosis and 1q-deletion was found in the ALT-positive group. TERT was frequently placed in juxtaposition to a previously established gene in neuroblastoma tumorigenesis or cancer in general. Given the importance of high-risk neuroblastoma, means for mitigating active telomere maintenance must be therapeutically explored.

18.
JCO Precis Oncol ; 7: e2300039, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384868

RESUMO

PURPOSE: Several studies have indicated that broad genomic characterization of childhood cancer provides diagnostically and/or therapeutically relevant information in selected high-risk cases. However, the extent to which such characterization offers clinically actionable data in a prospective broadly inclusive setting remains largely unexplored. METHODS: We implemented prospective whole-genome sequencing (WGS) of tumor and germline, complemented by whole-transcriptome sequencing (RNA-Seq) for all children diagnosed with a primary or relapsed solid malignancy in Sweden. Multidisciplinary molecular tumor boards were set up to integrate genomic data in the clinical decision process along with a medicolegal framework enabling secondary use of sequencing data for research purposes. RESULTS: During the study's first 14 months, 118 solid tumors from 117 patients were subjected to WGS, with complementary RNA-Seq for fusion gene detection in 52 tumors. There was no significant geographic bias in patient enrollment, and the included tumor types reflected the annual national incidence of pediatric solid tumor types. Of the 112 tumors with somatic mutations, 106 (95%) exhibited alterations with a clear clinical correlation. In 46 of 118 tumors (39%), sequencing only corroborated histopathological diagnoses, while in 59 cases (50%), it contributed to additional subclassification or detection of prognostic markers. Potential treatment targets were found in 31 patients (26%), most commonly ALK mutations/fusions (n = 4), RAS/RAF/MEK/ERK pathway mutations (n = 14), FGFR1 mutations/fusions (n = 5), IDH1 mutations (n = 2), and NTRK2 gene fusions (n = 2). In one patient, the tumor diagnosis was revised based on sequencing. Clinically relevant germline variants were detected in 8 of 94 patients (8.5%). CONCLUSION: Up-front, large-scale genomic characterization of pediatric solid malignancies provides diagnostically valuable data in the majority of patients also in a largely unselected cohort.


Assuntos
Carcinoma , Medicina de Precisão , Humanos , Criança , Recidiva Local de Neoplasia , Fusão Gênica , Genômica
19.
Mol Cancer ; 11: 40, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22695170

RESUMO

BACKGROUND: Hypermethylation of promotor CpG islands is a common mechanism that inactivates tumor suppressor genes in cancer. Genes belonging to the RASSF gene family have frequently been reported as epigenetically silenced by promotor methylation in human cancers. Two members of this gene family, RASSF1A and RASSF5A have been reported as methylated in neuroblastoma. Data from our previously performed genome-wide DNA methylation array analysis indicated that other members of the RASSF gene family are targeted by DNA methylation in neuroblastoma. RESULTS: In the current study, we found that several of the RASSF family genes (RASSF2, RASSF4, RASSF5, RASSF6, RASSF7, and RASSF10) to various degrees were methylated in neuroblastoma cell lines and primary tumors. In addition, several of the RASSF family genes showed low or absent mRNA expression in neuroblastoma cell lines. RASSF5 and RASSF6 were to various degrees methylated in a large portion of neuroblastoma tumors and RASSF7 was heavily methylated in most tumors. Further, CpG methylation sites in the CpG islands of some RASSF family members could be used to significantly discriminate between biological subgroups of neuroblastoma tumors. For example, RASSF5 methylation highly correlated to MYCN amplification and INRG stage M. Furthermore, high methylation of RASSF6 was correlated to unfavorable outcome, 1p deletion and MYCN amplification in our tumor material. IN CONCLUSION: This study shows that several genes belonging to the RASSF gene family are methylated in neuroblastoma. The genes RASSF5, RASSF6 and RASSF7 stand out as the most promising candidate genes for further investigations in neuroblastoma.


Assuntos
Metilação de DNA , Proteínas Monoméricas de Ligação ao GTP/genética , Neuroblastoma/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Azacitidina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Pré-Escolar , Ilhas de CpG , Epigênese Genética , Feminino , Amplificação de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactente , Masculino , Proteína Proto-Oncogênica N-Myc , Estadiamento de Neoplasias , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Prognóstico
20.
BMC Med Genet ; 13: 83, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22984959

RESUMO

BACKGROUND: In this study we aimed to quantify tumor suppressor gene (TSG) promoter methylation densities levels in primary neuroblastoma tumors and cell lines. A subset of these TSGs is associated with a CpG island methylator phenotype (CIMP) in other tumor types. METHODS: The study panel consisted of 38 primary tumors, 7 established cell lines and 4 healthy references. Promoter methylation was determined by bisulphate Pyrosequencing for 14 TSGs; and LINE-1 repeat element methylation was used as an indicator of global methylation levels. RESULTS: Overall mean TSG Z-scores were significantly increased in cases with adverse outcome, but were unrelated to global LINE-1 methylation. CIMP with hypermethylation of three or more gene promoters was observed in 6/38 tumors and 7/7 cell lines. Hypermethylation of one or more TSG (comprising TSGs BLU, CASP8, DCR2, CDH1, RASSF1A and RASSF2) was evident in 30/38 tumors. By contrast only very low levels of promoter methylation were recorded for APC, DAPK1, NORE1A, P14, P16, TP73, PTEN and RARB. Similar involvements of methylation instability were revealed between cell line models and neuroblastoma tumors. Separate analysis of two proposed CASP8 regulatory regions revealed frequent and significant involvement of CpG sites between exon 4 and 5, but modest involvement of the exon 1 region. CONCLUSIONS/SIGNIFICANCE: The results highlight the involvement of TSG methylation instability in neuroblastoma tumors and cell lines using quantitative methods, support the use of DNA methylation analyses as a prognostic tool for this tumor type, and underscore the relevance of developing demethylating therapies for its treatment.


Assuntos
Metilação de DNA , Neuroblastoma/genética , Regiões Promotoras Genéticas , Sequência de Bases , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Éxons , Humanos , Estimativa de Kaplan-Meier , Dados de Sequência Molecular , Neoplasias/genética , Neuroblastoma/mortalidade , Fenótipo , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA