Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Autoimmun ; 146: 103219, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696927

RESUMO

Tissue repair is disturbed in fibrotic diseases like systemic sclerosis (SSc), where the deposition of large amounts of extracellular matrix components such as collagen interferes with organ function. LAIR-1 is an inhibitory collagen receptor highly expressed on tissue immune cells. We questioned whether in SSc, impaired LAIR-1-collagen interaction is contributing to the ongoing inflammation and fibrosis. We found that SSc patients do not have an intrinsic defect in LAIR-1 expression or function. Instead, fibroblasts from healthy controls and SSc patients stimulated by soluble factors that drive inflammation and fibrosis in SSc deposit disorganized collagen products in vitro, which are dysfunctional LAIR-1 ligands. This is dependent of matrix metalloproteinases and platelet-derived growth factor receptor signaling. In support of a non-redundant role of LAIR-1 in the control of fibrosis, we found that LAIR-1-deficient mice have increased skin fibrosis in response to repeated injury and in the bleomycin mouse model for SSc. Thus, LAIR-1 represents an essential control mechanism for tissue repair. In fibrotic disease, excessive collagen degradation may lead to a disturbed feedback loop. The presence of functional LAIR-1 in patients provides a therapeutic opportunity to reactivate this intrinsic negative feedback mechanism in fibrotic diseases.


Assuntos
Colágeno , Modelos Animais de Doenças , Fibroblastos , Fibrose , Camundongos Knockout , Receptores Imunológicos , Escleroderma Sistêmico , Animais , Humanos , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Camundongos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Colágeno/metabolismo , Fibroblastos/metabolismo , Bleomicina/efeitos adversos , Pele/patologia , Pele/metabolismo , Pele/imunologia , Transdução de Sinais , Masculino , Feminino , Células Cultivadas
2.
Rheumatology (Oxford) ; 61(6): 2682-2693, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559222

RESUMO

OBJECTIVE: SSc is a complex disease characterized by vascular abnormalities and inflammation culminating in hypoxia and excessive fibrosis. Previously, we identified chemokine (C-X-C motif) ligand 4 (CXCL4) as a novel predictive biomarker in SSc. Although CXCL4 is well-studied, the mechanisms driving its production are unclear. The aim of this study was to elucidate the mechanisms leading to CXCL4 production. METHODS: Plasmacytoid dendritic cells (pDCs) from 97 healthy controls and 70 SSc patients were cultured in the presence of hypoxia or atmospheric oxygen level and/or stimulated with several toll-like receptor (TLR) agonists. Further, pro-inflammatory cytokine production, CXCL4, hypoxia-inducible factor (HIF) -1α and HIF-2α gene and protein expression were assessed using ELISA, Luminex, qPCR, FACS and western blot assays. RESULTS: CXCL4 release was potentiated only when pDCs were simultaneously exposed to hypoxia and TLR9 agonist (P < 0.0001). Here, we demonstrated that CXCL4 production is dependent on the overproduction of mitochondrial reactive oxygen species (mtROS) (P = 0.0079) leading to stabilization of HIF-2α (P = 0.029). In addition, we show that hypoxia is fundamental for CXCL4 production by umbilical cord CD34 derived pDCs. CONCLUSION: TLR-mediated activation of immune cells in the presence of hypoxia underpins the pathogenic production of CXCL4 in SSc. Blocking either mtROS or HIF-2α pathways may therapeutically attenuate the contribution of CXCL4 to SSc and other inflammatory diseases driven by CXCL4.


Assuntos
Fator Plaquetário 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escleroderma Sistêmico , Receptor Toll-Like 9 , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Dendríticas/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
3.
Rheumatology (Oxford) ; 59(9): 2258-2263, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840182

RESUMO

OBJECTIVES: SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target. This study aimed to analyse the potential role of exogenous SPARC as a regulator of fibrosis in SSc. METHODS: Dermal fibroblasts from both healthy controls and SSc patients were stimulated with SPARC alone or in combination with TGF-ß1, in the absence or presence of a TGF receptor 1 inhibitor. mRNA and protein expression of extracellular matrix components and other fibrosis-related mediators were measured by quantitative PCR and western blot. RESULTS: Exogenous SPARC induced mRNA and protein expression of collagen I, collagen IV, fibronectin 1, TGF-ß and SPARC by dermal fibroblasts from SSc patients, but not from healthy controls. Importantly, exogenous SPARC induced the activation of the tyrosine kinase SMAD2 and pro-fibrotic gene expression induced by SPARC in SSc fibroblasts was abrogated by inhibition of TGF-ß signalling. CONCLUSION: These results indicate that exogenous SPARC is an important pro-fibrotic mediator contributing to the pathology driving SSc but in a TGF-ß dependent manner. Therefore, SPARC could be a promising therapeutic target for reducing fibrosis in SSc patients, even in late states of the disease.


Assuntos
Fibroblastos/metabolismo , Osteonectina/genética , Escleroderma Sistêmico/genética , Pele/patologia , Fator de Crescimento Transformador beta1/genética , Estudos de Casos e Controles , Células Cultivadas , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Fibrose , Humanos , RNA Mensageiro/genética , Transdução de Sinais/genética , Pele/citologia , Ativação Transcricional/genética
4.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333969

RESUMO

Angiopoietin-2 (Ang-2), a ligand of the tyrosine kinase receptor Tie2, is essential for vascular development and blood vessel stability and is also involved in monocyte activation. Here, we examined the role of Ang-2 on monocyte activation in patients with systemic sclerosis (SSc). Ang-2 levels were measured in serum and skin of healthy controls (HCs) and SSc patients by ELISA and array profiling, respectively. mRNA expression of ANG2 was analyzed in monocytes, dermal fibroblasts, and human pulmonary arterial endothelial cells (HPAECs) by quantitative PCR. Monocytes were stimulated with Ang-2, or with serum from SSc patients in the presence of a Tie2 inhibitor or an anti-Ang2 neutralizing antibody. Interleukin (IL)-6 and IL-8 production was analyzed by ELISA. Ang-2 levels were elevated in the serum and skin of SSc patients compared to HCs. Importantly, serum Ang-2 levels correlated with clinical disease parameters, such as skin involvement. Lipopolysaccharide (LPS) LPS, R848, and interferon alpha2a (IFN-α) stimulation up-regulated the mRNA expression of ANG2 in monocytes, dermal fibroblasts, and HPAECs. Finally, Ang-2 induced the production of IL-6 and IL-8 in monocytes of SSc patients, while the inhibition of Tie2 or the neutralization of Ang-2 reduced the production of both cytokines in HC monocytes stimulated with the serum of SSc patients. Therefore, Ang-2 induces inflammatory activation of SSc monocytes and neutralization of Ang-2 might be a promising therapeutic target in the treatment of SSc.


Assuntos
Angiopoietina-2/metabolismo , Biomarcadores , Mediadores da Inflamação/metabolismo , Monócitos/metabolismo , Escleroderma Sistêmico/etiologia , Escleroderma Sistêmico/metabolismo , Adulto , Idoso , Angiopoietina-2/sangue , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Escleroderma Sistêmico/patologia , Pele/metabolismo
5.
Eur J Immunol ; 48(3): 522-531, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29193036

RESUMO

CXCL4 regulates multiple facets of the immune response and is highly upregulated in various Th17-associated rheumatic diseases. However, whether CXCL4 plays a direct role in the induction of IL-17 production by human CD4+ T cells is currently unclear. Here, we demonstrated that CXCL4 induced human CD4+ T cells to secrete IL-17 that co-expressed IFN-γ and IL-22, and differentiated naïve CD4+ T cells to become Th17-cytokine producing cells. In a co-culture system of human CD4+ T cells with monocytes or myeloid dendritic cells, CXCL4 induced IL-17 production upon triggering by superantigen. Moreover, when monocyte-derived dendritic cells were differentiated in the presence of CXCL4, they orchestrated increased levels of IL-17, IFN-γ, and proliferation by CD4+ T cells. Furthermore, the CXCL4 levels in synovial fluid from psoriatic arthritis patients strongly correlated with IL-17 and IL-22 levels. A similar response to CXCL4 of enhanced IL-17 production by CD4+ T cells was also observed in patients with psoriatic arthritis. Altogether, we demonstrate that CXCL4 boosts pro-inflammatory cytokine production especially IL-17 by human CD4+ T cells, either by acting directly or indirectly via myeloid antigen presenting cells, implicating a role for CXCL4 in PsA pathology.


Assuntos
Artrite Psoriásica/imunologia , Interleucina-17/biossíntese , Interleucinas/metabolismo , Fator Plaquetário 4/imunologia , Células Th17/imunologia , Células Apresentadoras de Antígenos/imunologia , Estudos de Casos e Controles , Diferenciação Celular/imunologia , Técnicas de Cocultura , Células Dendríticas/imunologia , Humanos , Ativação Linfocitária , Monócitos/imunologia , Interleucina 22
6.
Ann Rheum Dis ; 78(9): 1249-1259, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31126957

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) is an autoimmune disease with unknown pathogenesis manifested by inflammation, vasculopathy and fibrosis in skin and internal organs. Type I interferon signature found in SSc propelled us to study plasmacytoid dendritic cells (pDCs) in this disease. We aimed to identify candidate pathways underlying pDC aberrancies in SSc and to validate its function on pDC biology. METHODS: In total, 1193 patients with SSc were compared with 1387 healthy donors and 8 patients with localised scleroderma. PCR-based transcription factor profiling and methylation status analyses, single nucleotide polymorphism genotyping by sequencing and flow cytometry analysis were performed in pDCs isolated from the circulation of healthy controls or patients with SSc. pDCs were also cultured under hypoxia, inhibitors of methylation and hypoxia-inducible factors and runt-related transcription factor 3 (RUNX3) levels were determined. To study Runx3 function, Itgax-Cre:Runx3f/f mice were used in in vitro functional assay and bleomycin-induced SSc skin inflammation and fibrosis model. RESULTS: Here, we show downregulation of transcription factor RUNX3 in SSc pDCs. A higher methylation status of the RUNX3 gene, which is associated with polymorphism rs6672420, correlates with lower RUNX3 expression and SSc susceptibility. Hypoxia is another factor that decreases RUNX3 level in pDC. Mouse pDCs deficient of Runx3 show enhanced maturation markers on CpG stimulation. In vivo, deletion of Runx3 in dendritic cell leads to spontaneous induction of skin fibrosis in untreated mice and increased severity of bleomycin-induced skin fibrosis. CONCLUSIONS: We show at least two pathways potentially causing low RUNX3 level in SSc pDCs, and we demonstrate the detrimental effect of loss of Runx3 in SSc model further underscoring the role of pDCs in this disease.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , RNA/genética , Escleroderma Sistêmico/genética , Pele/patologia , Animais , Subunidade alfa 3 de Fator de Ligação ao Core/biossíntese , Células Dendríticas/patologia , Modelos Animais de Doenças , Progressão da Doença , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Humanos , Camundongos , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Pele/metabolismo
7.
J Autoimmun ; 89: 162-170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29371048

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) are regulatory molecules, which have been addressed as potential biomarkers and therapeutic targets in rheumatic diseases. Here, we investigated the miRNA signature in the serum of systemic sclerosis (SSc) patients and we further assessed their expression in early stages of the disease. METHODS: The levels of 758 miRNAs were evaluated in the serum of 26 SSc patients as compared to 9 healthy controls by using an Openarray platform. Three miRNAs were examined in an additional cohort of 107 SSc patients and 24 healthy donors by single qPCR. MiR-483-5p expression was further analysed in the serum of patients with localized scleroderma (LoS) (n = 22), systemic lupus erythematosus (SLE) (n = 33) and primary Sjögren's syndrome (pSS) (n = 23). The function of miR-483-5p was examined by transfecting miR-483-5p into primary human dermal fibroblasts and pulmonary endothelial cells. RESULTS: 30 miRNAs were significantly increased in patients with SSc. Of these, miR-483-5p showed reproducibly higher levels in an independent SSc cohort and was also elevated in patients with preclinical-SSc symptoms (early SSc). Notably, miR-483-5p was not differentially expressed in patients with SLE or pSS, whereas it was up-regulated in LoS, indicating that this miRNA could be involved in the development of skin fibrosis. Consistently, miR-483-5p overexpression in fibroblasts and endothelial cells modulated the expression of fibrosis-related genes. CONCLUSIONS: Our findings showed that miR-483-5p is up-regulated in the serum of SSc patients, from the early stages of the disease onwards, and indicated its potential function as a fine regulator of fibrosis in SSc.


Assuntos
Células Endoteliais/fisiologia , Fibroblastos/fisiologia , MicroRNAs/genética , Escleroderma Sistêmico/genética , Pele/patologia , Adulto , Idoso , Estudos de Coortes , Feminino , Fibrose , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
8.
J Immunol ; 197(8): 3326-3335, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27647831

RESUMO

Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and visceral organs and vascular alterations. SSc pathophysiology involves systemic inflammation and oxidative stress. Because the vanin-1 gene (vnn1) encodes an enzyme with pantetheinase activity that converts vasculoprotective pantethine into profibrotic pantothenic acid and pro-oxidant cystamine, we tested this pathway in the pathophysiology of SSc. Activation of the vanin-1/pantetheinase pathway was investigated in wild-type BALB/c mice with hypochlorous acid (HOCl)-induced SSc by ELISA and Western blotting. We then evaluated the effects of the inactivation of vnn1 on the development of fibrosis, endothelial alterations, and immunological activation in mice with HOCl- and bleomycin-induced SSc. We then explored the vanin-1/pantetheinase pathway in a cohort of patients with SSc and in controls. In wild-type mice with HOCl-induced SSc, the vanin-1/pantetheinase pathway was dysregulated, with elevation of vanin-1 activity in skin and high levels of serum pantothenic acid. Inactivation of the vnn1 gene in vnn1-/- mice with HOCl-induced SSc prevented the development of characteristic features of the disease, including fibrosis, immunologic abnormalities, and endothelial dysfunction. Remarkably, patients with diffuse SSc also had increased expression of vanin-1 in skin and blood and elevated levels of serum pantothenic acid that correlated with the severity of the disease. Our data demonstrate that vanin-1/pantetheinase controls fibrosis, vasculopathy, autoimmunity, and oxidative stress in SSc. The levels of vanin-1 expression and pantothenic acid determine SSc severity and can be used as markers of disease severity. More importantly, inhibition of vanin-1 can open new therapeutic approaches in SSc.


Assuntos
Amidoidrolases/metabolismo , Escleroderma Sistêmico/metabolismo , Animais , Feminino , Proteínas Ligadas por GPI/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ácido Pantotênico/metabolismo
9.
Arthritis Rheum ; 65(5): 1367-77, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23335130

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) is characterized by microvascular damage, fibrosis of skin and visceral organs, and autoimmunity. Previous studies have shown that angiotensin II is involved in the synthesis of type I collagen. We investigated whether the blockade of angiotensin II receptor type I (AT1 ) by irbesartan reduces skin and lung fibrosis in 2 murine models of SSc. METHODS: SSc was induced by daily intradermal injection of HOCl into the backs of BALB/c mice (HOCl-induced SSc). Mice were treated daily with irbesartan by oral gavage. RESULTS: Irbesartan reduced dermal thickness, collagen concentration, Smad2/3, and α-smooth muscle actin expression, as well as fibroblast proliferation and H-Ras expression in the skin of mice with HOCl-induced SSc. Mice treated with irbesartan also displayed less lung fibrosis, less inflammation, and a lower concentration of collagen in the lungs than untreated mice. Exhaled nitric oxide, inducible nitric oxide synthase, and 3-nitrotyrosine expression in the lungs were decreased following irbesartan treatment. Moreover, irbesartan reduced the number and the proliferation of splenic B and T cells and the serum levels of anti-DNA topoisomerase I autoantibodies. CONCLUSION: Irbesartan, an AT1 antagonist, prevents fibrosis and inflammation and inhibits nitric oxide production in HOCl-induced models of systemic fibrosis. Our findings extend the indication of an AT1 antagonist to SSc patients with diffuse fibrosis, especially those with lung involvement.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Compostos de Bifenilo/farmacologia , Fibrose/prevenção & controle , Fibrose Pulmonar/prevenção & controle , Escleroderma Sistêmico/tratamento farmacológico , Pele/efeitos dos fármacos , Tetrazóis/farmacologia , Administração Oral , Animais , Biomarcadores/metabolismo , Testes Respiratórios , Modelos Animais de Doenças , Feminino , Fibrose/patologia , Ácido Hipocloroso/administração & dosagem , Ácido Hipocloroso/toxicidade , Injeções Intradérmicas , Irbesartana , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxidantes/administração & dosagem , Oxidantes/toxicidade , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Escleroderma Sistêmico/patologia , Pele/metabolismo , Pele/patologia , Tirosina/análogos & derivados , Tirosina/metabolismo
10.
J Immunol ; 188(10): 5142-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22491256

RESUMO

Chronic graft-versus-host disease (GVHD) follows allogeneic hematopoietic stem cell transplantation. It results from alloreactive processes induced by minor MHC incompatibilities triggered by activated APCs, such as plasmacytoid dendritic cells (pDCs), and leading to the activation of CD4 T cells. Therefore, we tested whether CD4(+) and pDCs, activated cells that produce high levels of reactive oxygen species, could be killed by arsenic trioxide (As(2)O(3)), a chemotherapeutic drug used in the treatment of acute promyelocytic leukemia. Indeed, As(2)O(3) exerts its cytotoxic effects by inducing a powerful oxidative stress that exceeds the lethal threshold. Sclerodermatous GVHD was induced in BALB/c mice by body irradiation, followed by B10.D2 bone marrow and spleen cell transplantation. Mice were simultaneously treated with daily i.p. injections of As(2)O(3). Transplanted mice displayed severe clinical symptoms, including diarrhea, alopecia, vasculitis, and fibrosis of the skin and visceral organs. The symptoms were dramatically abrogated in mice treated with As(2)O(3). These beneficial effects were mediated through the depletion of glutathione and the overproduction of H(2)O(2) that killed activated CD4(+) T cells and pDCs. The dramatic improvement provided by As(2)O(3) in the model of sclerodermatous GVHD that associates fibrosis with immune activation provides a rationale for the evaluation of As(2)O(3) in the management of patients affected by chronic GVHD.


Assuntos
Arsenicais/administração & dosagem , Doença Enxerto-Hospedeiro/prevenção & controle , Óxidos/administração & dosagem , Escleroderma Sistêmico/prevenção & controle , Animais , Trióxido de Arsênio , Arsenicais/uso terapêutico , Transplante de Medula Óssea/imunologia , Transplante de Medula Óssea/patologia , Doença Crônica , Modelos Animais de Doenças , Feminino , Fibrose/prevenção & controle , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxidos/uso terapêutico , Distribuição Aleatória , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/patologia , Baço/imunologia , Baço/patologia , Baço/transplante
11.
Arthritis Rheum ; 64(6): 1990-2000, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22213155

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) is characterized by fibrosis of the skin and visceral organs, vascular dysfunction, and immunologic dysregulation. Platelet-derived growth factors (PDGFs) have been implicated in the development of fibrosis and dysregulation of vascular function. We investigated the effects of sunitinib and sorafenib, two tyrosine kinase inhibitors that interfere with PDGF signaling, in a mouse model of diffuse SSc. METHODS: SSc was induced in BALB/c mice by subcutaneous injections of HOCl daily for 6 weeks. Mice were randomized to treatment with sunitinib, sorafenib, or vehicle. The levels of native and phosphorylated PDGF receptor ß (PDGFRß) and vascular endothelial growth factor receptor (VEGFR) in the skin were assessed by Western blot and immunohistochemical analyses. Skin and lung fibrosis were evaluated by histologic and biochemical methods. Autoantibodies were detected by enzyme-linked immunosorbent assay, and spleen cell populations were analyzed by flow cytometry. RESULTS: Phosphorylation of PDGFRß and VEGFR was higher in fibrotic skin from HOCl-injected mice with SSc than from PBS-injected mice. Injections of HOCl induced cutaneous and lung fibrosis, increased the proliferation rate of fibroblasts in areas of fibrotic skin, increased splenic B cell and T cell counts, and increased anti-DNA topoisomerase I autoantibody levels in BALB/c mice. All of these features were reduced by sunitinib but not by sorafenib. Sunitinib significantly reduced the phosphorylation of both PDGF and VEGF receptors. CONCLUSION: Inhibition of the hyperactivated PDGF and VEGF pathways by sunitinib prevented the development of fibrosis in HOCl-induced murine SSc and may represent a new SSc treatment for testing in clinical trials.


Assuntos
Progressão da Doença , Indóis/farmacologia , Pirróis/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Escleroderma Sistêmico/metabolismo , Pele/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Indóis/uso terapêutico , Camundongos , Fosforilação/efeitos dos fármacos , Pirróis/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/patologia , Pele/metabolismo , Pele/patologia , Sunitinibe
12.
Arthritis Rheum ; 64(10): 3430-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22576901

RESUMO

OBJECTIVE: In patients with systemic sclerosis (SSc), activated fibroblasts produce reactive oxygen species (ROS) that stimulate their proliferation and collagen synthesis. By analogy with tumor cells that undergo apoptosis upon cytotoxic treatment that increases ROS levels beyond a lethal threshold, we tested whether activated fibroblasts could be selectively killed by the cytotoxic molecule arsenic trioxide (As(2) O(3) ) in a murine model of SSc. METHODS: SSc was induced in BALB/c mice by daily intradermal injections of HOCl. Mice were simultaneously treated with daily intraperitoneal injections of As(2) O(3) . RESULTS: As(2) O(3) limited dermal thickness and inhibited collagen deposition, as assessed by histologic examination and measurement of mouse skin and lung collagen contents. As(2) O(3) abrogated vascular damage, as shown by serum vascular cell adhesion molecule 1 level, and inhibited the production of autoantibodies, interleukin-4 (IL-4), and IL-13 by activated T cells. These beneficial effects were mediated through ROS generation that selectively killed activated fibroblasts containing low levels of glutathione. CONCLUSION: Our findings indicate that treatment with As(2) O(3) dramatically improves skin and lung fibrosis in a mouse model of SSc, providing a rationale for the evaluation of As(2) O(3) treatment in patients with SSc.


Assuntos
Arsenicais/farmacologia , Fibroblastos/efeitos dos fármacos , Óxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Escleroderma Sistêmico/metabolismo , Pele/efeitos dos fármacos , Animais , Trióxido de Arsênio , Autoanticorpos/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Glutationa/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Camundongos , Escleroderma Sistêmico/patologia , Pele/metabolismo , Pele/patologia , Molécula 1 de Adesão de Célula Vascular/sangue
13.
Am J Pathol ; 179(2): 880-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21718677

RESUMO

Deep infiltrating endometriosis (DIE) is a particular clinical and histological entity of endometriosis responsible for chronic pelvic pain and infertility. Here we characterize the proliferative phenotype of DIE cells, to explore the cellular and molecular mechanisms that could explain their aggressive potential. In addition, the inhibition of mTOR/AKT pathway was tested, as a potential treatment of DIE. Included were 22 patients with DIE and 12 control patients without endometriosis. Epithelial and stromal cells were extracted from biopsies of eutopic endometrium and deep infiltrating endometriotic nodules from patients with DIE. Cell proliferation was determined by thymidine incorporation. Oxidative stress was assayed by spectrofluorometry. The ERK and mTOR/AKT pathways were analyzed in vitro by Western blot and for AKT in vivo in a mouse model of DIE. The proliferation rate of eutopic endometrial cells and of deep infiltrating endometriotic cells from DIE patients was higher than that of endometrial cells from controls. The hyperproliferative phenotype of endometriotic cells was associated with an increase in endogenous oxidative stress, and with activation of the ERK and mTOR/AKT pathways. mTOR/AKT inhibition by temsirolimus decreased endometriotic cell proliferation both in vitro and in vivo in a mouse model of DIE. Blocking the mTOR/AKT pathway offers new prospects for the treatment of DIE.


Assuntos
Endometriose/metabolismo , Sirolimo/análogos & derivados , Adulto , Animais , Biópsia , Proliferação de Células , Modelos Animais de Doenças , Endométrio/patologia , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Estresse Oxidativo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio , Sirolimo/farmacologia , Espectrometria de Fluorescência/métodos , Serina-Treonina Quinases TOR/metabolismo
14.
J Pathol ; 225(2): 265-75, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21630270

RESUMO

Renal ischaemia-reperfusion injury (IRI) is consecutive to tissue oxidative damage and cell apoptosis that lead to acute renal failure (ARF) in renal allografts. The aim of this study was to investigate the beneficial effects of a pretreatment by clopidogrel on renal IRI in mice. IRI was induced by bilateral renal ischaemia for 45 min followed by reperfusion. Sixty-two healthy male BALB/c mice were randomly assigned to one of the following groups: PBS + ischaemia-reperfusion (IR); clopidogrel + IR; PBS + sham IR; clopidogrel + sham IR. Clopidogrel (25 mg/kg) or PBS was administered per os to the animals via a gastric cannula 24 h before operation. All mice were given a single dose of clopidogrel or PBS. Renal function histological damage, renal cell apoptosis, renal antioxidant activities, and CD41 expression were determined 24 h after reperfusion. The survival rates were evaluated over 7 days. Animals pretreated with clopidogrel had lower plasma levels of blood urea nitrogen (BUN) and creatinine, lower histopathological scores, and improved survival rates following IR. Renal cell apoptosis induced by IR was decreased in kidneys of mice pretreated by clopidogrel, with an increase in Bcl-2 and Bcl-xL expression and a decrease in caspase-3, caspase-8, and Bax expression. Renal reduced glutathione, superoxide dismutase, and catalase activities were unmodified by the pretreatment with clopidogrel. However, clopidogrel resulted in an increased total antioxidant capacity of the kidney. Furthermore, pretreatment by clopidogrel decreased the number of CD41-positive cells. Thus, clopidogrel exerts protective effects on renal IRI in mice by abrogating renal cell apoptosis as a consequence of improved renal antioxidant capacity and could be tried as a novel therapeutic tool in renal IRI.


Assuntos
Apoptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Ticlopidina/análogos & derivados , Animais , Clopidogrel , Modelos Animais de Doenças , Imunofluorescência , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ticlopidina/farmacologia
15.
Cell Rep ; 38(1): 110189, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986347

RESUMO

Fibrosis is a major cause of mortality worldwide, characterized by myofibroblast activation and excessive extracellular matrix deposition. Systemic sclerosis is a prototypic fibrotic disease in which CXCL4 is increased and strongly correlates with skin and lung fibrosis. Here we aim to elucidate the role of CXCL4 in fibrosis development. CXCL4 levels are increased in multiple inflammatory and fibrotic mouse models, and, using CXCL4-deficient mice, we demonstrate the essential role of CXCL4 in promoting fibrotic events in the skin, lungs, and heart. Overexpressing human CXCL4 in mice aggravates, whereas blocking CXCL4 reduces, bleomycin-induced fibrosis. Single-cell ligand-receptor analysis predicts CXCL4 to affect endothelial cells and fibroblasts. In vitro, we confirm that CXCL4 directly induces myofibroblast differentiation and collagen synthesis in different precursor cells, including endothelial cells, by stimulating endothelial-to-mesenchymal transition. Our findings identify a pivotal role of CXCL4 in fibrosis, further substantiating the potential role of neutralizing CXCL4 as a therapeutic strategy.


Assuntos
Matriz Extracelular/patologia , Miofibroblastos/metabolismo , Fator Plaquetário 4/metabolismo , Fibrose Pulmonar/patologia , Escleroderma Sistêmico/patologia , Animais , Bleomicina/toxicidade , Linhagem Celular , Colágeno/biossíntese , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/citologia , Pericitos/metabolismo , Fator Plaquetário 4/genética , Células Estromais/citologia , Células Estromais/metabolismo
16.
Front Immunol ; 11: 1793, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973751

RESUMO

Inhibitory receptors are crucial immune regulators and are essential to prevent exacerbated responses, thus contributing to immune homeostasis. Leukocyte associated immunoglobulin like receptor 1 (LAIR-1) is an immune inhibitory receptor which has collagen and collagen domain containing proteins as ligands. LAIR-1 is broadly expressed on immune cells and has a large availability of ligands in both circulation and tissues, implicating a need for tight regulation of this interaction. In the current study, we sought to examine the regulation and function of LAIR-1 on monocyte, dendritic cell (DC) and macrophage subtypes, using different in vitro models. We found that LAIR-1 is highly expressed on intermediate monocytes as well as on plasmacytoid DCs. LAIR-1 is also expressed on skin immune cells, mainly on tissue CD14+ cells, macrophages and CD1c+ DCs. In vitro, monocyte and type-2 conventional DC stimulation leads to LAIR-1 upregulation, which may reflect the importance of LAIR-1 as negative regulator under inflammatory conditions. Indeed, we demonstrate that LAIR-1 ligation on monocytes inhibits toll like receptor (TLR)4 and Interferon (IFN)-α- induced signals. Furthermore, LAIR-1 is downregulated on GM-CSF and IFN-γ monocyte-derived macrophages and monocyte-derived DCs. In addition, LAIR-1 triggering during monocyte derived-DC differentiation results in significant phenotypic changes, as well as a different response to TLR4 and IFN-α stimulation. This indicates a role for LAIR-1 in skewing DC function, which impacts the cytokine expression profile of these cells. In conclusion, we demonstrate that LAIR-1 is consistently upregulated on monocytes and DC during the inflammatory phase of the immune response and tends to restore its expression during the resolution phase. Under inflammatory conditions, LAIR-1 has an inhibitory function, pointing toward to a potential intervention opportunity targeting LAIR-1 in inflammatory conditions.


Assuntos
Células Dendríticas/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo , Receptores Imunológicos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Receptores Imunológicos/genética , Transdução de Sinais
17.
Front Immunol ; 11: 2149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042127

RESUMO

Fibrosis is a condition shared by numerous inflammatory diseases. Our incomplete understanding of the molecular mechanisms underlying fibrosis has severely hampered effective drug development. CXCL4 is associated with the onset and extent of fibrosis development in multiple inflammatory and fibrotic diseases. Here, we used monocyte-derived cells as a model system to study the effects of CXCL4 exposure on dendritic cell development by integrating 65 longitudinal and paired whole genome transcriptional and methylation profiles. Using data-driven gene regulatory network analyses, we demonstrate that CXCL4 dramatically alters the trajectory of monocyte differentiation, inducing a novel pro-inflammatory and pro-fibrotic phenotype mediated via key transcriptional regulators including CIITA. Importantly, these pro-inflammatory cells directly trigger a fibrotic cascade by producing extracellular matrix molecules and inducing myofibroblast differentiation. Inhibition of CIITA mimicked CXCL4 in inducing a pro-inflammatory and pro-fibrotic phenotype, validating the relevance of the gene regulatory network. Our study unveils that CXCL4 acts as a key secreted factor driving innate immune training and forming the long-sought link between inflammation and fibrosis.


Assuntos
Células Dendríticas/citologia , Fibrose/imunologia , Redes Reguladoras de Genes , Inflamação/imunologia , Fator Plaquetário 4/fisiologia , Transcriptoma , Células Cultivadas , Técnicas de Reprogramação Celular , Metilação de DNA , Árvores de Decisões , Decitabina/farmacologia , Fibroblastos , Fibrose/genética , Humanos , Inflamação/genética , Monócitos/citologia , Análise de Escalonamento Multidimensional , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/fisiologia , Poli I-C/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA-Seq , Transativadores/antagonistas & inibidores , Transativadores/fisiologia
18.
Arthritis Rheumatol ; 71(10): 1711-1722, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31012544

RESUMO

OBJECTIVE: To analyze the potential role of semaphorin 4A (Sema4A) in inflammatory and fibrotic processes involved in the pathology of systemic sclerosis (SSc). METHODS: Sema4A levels in the plasma of healthy controls (n = 11) and SSc patients (n = 20) were determined by enzyme-linked immunosorbent assay (ELISA). The expression of Sema4A and its receptors in monocytes and CD4+ T cells from healthy controls and SSc patients (n = 6-7 per group) was determined by ELISA and flow cytometry. Th17 cytokine production by CD4+ T cells (n = 5-7) was analyzed by ELISA and flow cytometry. The production of inflammatory mediators and extracellular matrix (ECM) components by dermal fibroblast cells (n = 6) was analyzed by quantitative polymerase chain reaction, ELISA, Western blotting, confocal microscopy, and ECM deposition assay. RESULTS: Plasma levels of Sema4A, and Sema4A expression by circulating monocytes and CD4+ T cells, were significantly higher in SSc patients than in healthy controls (P < 0.05). Inflammatory mediators significantly up-regulated the secretion of Sema4A by monocytes and CD4+ T cells from SSc patients (P < 0.05 versus unstimulated SSc cells). Functional assays showed that Sema4A significantly enhanced the expression of Th17 cytokines induced by CD3/CD28 in total CD4+ T cells as well in different CD4+ T cell subsets (P < 0.05 versus unstimulated SSc cells). Finally, Sema4A induced a profibrotic phenotype in dermal fibroblasts from both healthy controls and SSc patients, which was abrogated by blocking or silencing the expression of Sema4A receptors. CONCLUSION: Our findings indicate that Sema4A plays direct and dual roles in promoting inflammation and fibrosis, 2 main features of SSc, suggesting that Sema4A might be a novel therapeutic target in SSc.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Fibroblastos/metabolismo , Fibrose/metabolismo , Inflamação/metabolismo , Monócitos/imunologia , Escleroderma Sistêmico/metabolismo , Semaforinas/metabolismo , Adulto , Western Blotting , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Fibrose/patologia , Humanos , Inflamação/imunologia , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/patologia , Pele/citologia , Células Th17/imunologia
19.
Immunol Lett ; 195: 18-29, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29126878

RESUMO

Systemic sclerosis (SSc) is a complex heterogeneous fibrotic autoimmune disease with an unknown exact etiology, and characterized by three hallmarks: fibrosis, vasculopathy, and immune dysfunction. Dendritic cells (DCs) are specialized cells in pathogen sensing with high potency of antigen presentation and capable of releasing mediators to shape the immune response. Altered DCs distributions and their impaired functions may account for their role in breaking the immune tolerance and driving inflammation in SSc, and the direct contribution of DCs in promoting endothelial dysfunction and fibrotic process has only begun to be understood. Plasmacytoid dendritic cells in particular have been implicated due to their high production of type I interferon as well as other cytokines and chemokines, including the pro-inflammatory and anti-angiogenic CXCL4. Furthermore, a deeper understanding of human and mouse DC biology has clarified their identification and function in different tissues, and novel DC subsets have only recently been discovered. In this review, we highlight key findings and recent advances exploring DC role in the pathogenesis of SSc and other related autoimmune diseases, and consideration of their potential use as targeted therapy in SSc.


Assuntos
Células Dendríticas/imunologia , Inflamação/imunologia , Escleroderma Sistêmico/imunologia , Animais , Apresentação de Antígeno , Diferenciação Celular , Humanos , Camundongos , Modelos Animais , Fator Plaquetário 4/metabolismo
20.
Nat Rev Rheumatol ; 14(11): 657-673, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305700

RESUMO

Systemic sclerosis (SSc) is a severe autoimmune disease that is characterized by vascular abnormalities, immunological alterations and fibrosis of the skin and internal organs. The results of genetic studies in patients with SSc have revealed statistically significant genetic associations with disease manifestations and progression. Nevertheless, genetic susceptibility to SSc is moderate, and the functional consequences of genetic associations remain only partially characterized. A current hypothesis is that, in genetically susceptible individuals, epigenetic modifications constitute the driving force for disease initiation. As epigenetic alterations can occur years before fibrosis appears, these changes could represent a potential link between inflammation and tissue fibrosis. Epigenetics is a fast-growing discipline, and a considerable number of important epigenetic studies in SSc have been published in the past few years that span histone post-translational modifications, DNA methylation, microRNAs and long non-coding RNAs. This Review describes the latest insights into genetic and epigenetic contributions to the pathogenesis of SSc and aims to provide an improved understanding of the molecular pathways that link inflammation and fibrosis. This knowledge will be of paramount importance for the development of medicines that are effective in treating or even reversing tissue fibrosis.


Assuntos
Epigênese Genética , Predisposição Genética para Doença/genética , Escleroderma Sistêmico/genética , Metilação de DNA , Progressão da Doença , Estudos de Associação Genética , Humanos , Processamento de Proteína Pós-Traducional , RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA