Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 186(18): 3945-3967.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582358

RESUMO

Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Acetilação , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteômica/métodos
2.
Cell ; 185(25): 4703-4716.e16, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36455558

RESUMO

We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.


Assuntos
Judeus , População Branca , Humanos , Judeus/genética , Genética Populacional , Genoma Humano
3.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649874

RESUMO

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteogenômica , Adenocarcinoma de Pulmão/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Fusão Oncogênica , Fenótipo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
4.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33212010

RESUMO

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Terapia de Alvo Molecular , Proteogenômica , Desaminases APOBEC/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Estudos de Coortes , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Imunoterapia , Metabolômica , Pessoa de Meia-Idade , Mutagênese/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Receptor ErbB-2/metabolismo , Proteína do Retinoblastoma/metabolismo , Microambiente Tumoral/imunologia
5.
Cell ; 180(4): 729-748.e26, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059776

RESUMO

We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/ß-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.


Assuntos
Carcinoma/genética , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Proteoma/genética , Transcriptoma , Acetilação , Animais , Antígenos de Neoplasias/genética , Carcinoma/imunologia , Carcinoma/patologia , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal/genética , Retroalimentação Fisiológica , Feminino , Instabilidade Genômica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Repetições de Microssatélites , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Transdução de Sinais
6.
Cell ; 164(3): 538-49, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26806129

RESUMO

Mutational processes constantly shape the somatic genome, leading to immunity, aging, cancer, and other diseases. When cancer is the outcome, we are afforded a glimpse into these processes by the clonal expansion of the malignant cell. Here, we characterize a less explored layer of the mutational landscape of cancer: mutational asymmetries between the two DNA strands. Analyzing whole-genome sequences of 590 tumors from 14 different cancer types, we reveal widespread asymmetries across mutagenic processes, with transcriptional ("T-class") asymmetry dominating UV-, smoking-, and liver-cancer-associated mutations and replicative ("R-class") asymmetry dominating POLE-, APOBEC-, and MSI-associated mutations. We report a striking phenomenon of transcription-coupled damage (TCD) on the non-transcribed DNA strand and provide evidence that APOBEC mutagenesis occurs on the lagging-strand template during DNA replication. As more genomes are sequenced, studying and classifying their asymmetries will illuminate the underlying biological mechanisms of DNA damage and repair.


Assuntos
Dano ao DNA , Análise Mutacional de DNA , Reparo do DNA , Neoplasias/genética , Replicação do DNA , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Mutação , Neoplasias/patologia , Transcrição Gênica
7.
Nature ; 620(7973): 393-401, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37407818

RESUMO

Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified1-4, the underlying molecular mechanisms shaping tumour evolution during treatment are incompletely understood. Genomic profiling of patient tumours has implicated apolipoprotein B messenger RNA editing catalytic polypeptide-like (APOBEC) cytidine deaminases in tumour evolution; however, their role during therapy and the development of acquired drug resistance is undefined. Here we report that lung cancer targeted therapies commonly used in the clinic can induce cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Therapy-induced A3A promotes the formation of double-strand DNA breaks, increasing genomic instability in drug-tolerant persisters. Deletion of A3A reduces APOBEC mutations and structural variations in persister cells and delays the development of drug resistance. APOBEC mutational signatures are enriched in tumours from patients with lung cancer who progressed after extended responses to targeted therapies. This study shows that induction of A3A in response to targeted therapies drives evolution of drug-tolerant persister cells, suggesting that suppression of A3A expression or activity may represent a potential therapeutic strategy in the prevention or delay of acquired resistance to lung cancer targeted therapy.


Assuntos
Citidina Desaminase , Neoplasias Pulmonares , Humanos , Citidina Desaminase/deficiência , Citidina Desaminase/efeitos dos fármacos , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular , Mutação , Resistencia a Medicamentos Antineoplásicos
8.
Nature ; 578(7793): 102-111, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025015

RESUMO

The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.


Assuntos
Genoma Humano/genética , Mutação/genética , Neoplasias/genética , Quebras de DNA , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Mutação INDEL
9.
Nature ; 568(7753): 551-556, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971823

RESUMO

Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics1. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins2. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach3. Hypothesizing that other DNA repair defects would give rise to synthetic lethal relationships, we queried dependencies in cancers with microsatellite instability (MSI), which results from deficient DNA mismatch repair. Here we analysed data from large-scale silencing screens using CRISPR-Cas9-mediated knockout and RNA interference, and found that the RecQ DNA helicase WRN was selectively essential in MSI models in vitro and in vivo, yet dispensable in models of cancers that are microsatellite stable. Depletion of WRN induced double-stranded DNA breaks and promoted apoptosis and cell cycle arrest selectively in MSI models. MSI cancer models required the helicase activity of WRN, but not its exonuclease activity. These findings show that WRN is a synthetic lethal vulnerability and promising drug target for MSI cancers.


Assuntos
Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias/genética , Mutações Sintéticas Letais/genética , Helicase da Síndrome de Werner/genética , Apoptose/genética , Sistemas CRISPR-Cas/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Humanos , Modelos Genéticos , Neoplasias/patologia , Interferência de RNA , Proteína Supressora de Tumor p53/metabolismo , Helicase da Síndrome de Werner/deficiência
10.
Nature ; 560(7718): 325-330, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089904

RESUMO

Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Evolução Molecular , Variação Genética/genética , Instabilidade Genômica/genética , Transcrição Gênica/genética , Neoplasias da Mama/patologia , Proliferação de Células , Forma Celular , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Variação Genética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Humanos , Células MCF-7 , Reprodutibilidade dos Testes
12.
Nature ; 547(7661): 55-60, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28658208

RESUMO

Genomic analysis of tumours has led to the identification of hundreds of cancer genes on the basis of the presence of mutations in protein-coding regions. By contrast, much less is known about cancer-causing mutations in non-coding regions. Here we perform deep sequencing in 360 primary breast cancers and develop computational methods to identify significantly mutated promoters. Clear signals are found in the promoters of three genes. FOXA1, a known driver of hormone-receptor positive breast cancer, harbours a mutational hotspot in its promoter leading to overexpression through increased E2F binding. RMRP and NEAT1, two non-coding RNA genes, carry mutations that affect protein binding to their promoters and alter expression levels. Our study shows that promoter regions harbour recurrent mutations in cancer with functional consequences and that the mutations occur at similar frequencies as in coding regions. Power analyses indicate that more such regions remain to be discovered through deep sequencing of adequately sized cohorts of patients.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Mutação , Regiões Promotoras Genéticas/genética , Estudos de Coortes , Fatores de Transcrição E2F/metabolismo , Exoma/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ligação Proteica/genética , RNA Longo não Codificante/genética , Receptores de Estrogênio/antagonistas & inibidores
13.
Clin Genet ; 101(4): 442-447, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34967012

RESUMO

Polymerase proofreading-associated polyposis (PPAP) and Lynch syndrome, caused by mutated POLE and mismatch repair (MMR) genes, respectively, are associated with adult-onset cancer. PPAP and MMR-deficient tumors are both hypermutated, and each has a unique mutational signature. We describe a 4.5-year-old boy with multiple café au lait spots who presented with metastatic Sonic Hedgehog-activated medulloblastoma, with partial response to intensive chemotherapy and immunotherapy. The tumor showed microsatellite stability, loss of PMS2 nuclear expression, and an exceptionally high tumor mutational burden of 276 Mut/Mb. Germline molecular analysis revealed an inherited heterozygous pathogenic POLE variant and a de novo heterozygous PMS2 pathogenic variant. The tumor featured the MMR, POLE, and POLE+MMR mutational signatures. This is the first description of a di-genic condition, which we named "POL-LYNCH syndrome," manifested by an aggressive ultra-mutant pediatric medulloblastoma with a unique genomic signature.


Assuntos
Neoplasias Cerebelares , Neoplasias Colorretais Hereditárias sem Polipose , DNA Polimerase II/genética , Meduloblastoma , Proteínas de Ligação a Poli-ADP-Ribose/genética , Neoplasias Cerebelares/complicações , Neoplasias Cerebelares/genética , Pré-Escolar , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa/genética , Proteínas Hedgehog/genética , Humanos , Masculino , Meduloblastoma/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética
14.
Genome Res ; 28(12): 1901-1918, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30459213

RESUMO

Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants. Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This approach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon (POLE) proofreading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression (RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with nonuniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain mutations.


Assuntos
Divisão Celular/genética , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Linhagem Celular , Variações do Número de Cópias de DNA , Análise Mutacional de DNA/mortalidade , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Célula Única/métodos , Imagem com Lapso de Tempo
15.
Nature ; 519(7543): 349-52, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25731168

RESUMO

Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Poliploidia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Aneuploidia , Cromossomos Fúngicos/genética , Células Clonais/citologia , Células Clonais/metabolismo , Diploide , Aptidão Genética/genética , Haploidia , Taxa de Mutação , Mutação Puntual/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 110(27): E2460-9, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23781101

RESUMO

The highly skewed distribution of species among genera, although challenging to macroevolutionists, provides an opportunity to understand the dynamics of diversification, including species formation, extinction, and morphological evolution. Early models were based on either the work by Yule [Yule GU (1925) Philos Trans R Soc Lond B Biol Sci 213:21-87], which neglects extinction, or a simple birth-death (speciation-extinction) process. Here, we extend the more recent development of a generic, neutral speciation-extinction (of species)-origination (of genera; SEO) model for macroevolutionary dynamics of taxon diversification. Simulations show that deviations from the homogeneity assumptions in the model can be detected in species-per-genus distributions. The SEO model fits observed species-per-genus distributions well for class-to-kingdom-sized taxonomic groups. The model's predictions for the appearance times (the time of the first existing species) of the taxonomic groups also approximately match estimates based on molecular inference and fossil records. Unlike estimates based on analyses of phylogenetic reconstruction, fitted extinction rates for large clades are close to speciation rates, consistent with high rates of species turnover and the relatively slow change in diversity observed in the fossil record. Finally, the SEO model generally supports the consistency of generic boundaries based on morphological differences between species and provides a comparator for rates of lineage splitting and morphological evolution.


Assuntos
Evolução Biológica , Modelos Biológicos , Animais , Extinção Biológica , Fósseis , Especiação Genética , Humanos , Filogenia , Processos Estocásticos , Fatores de Tempo
17.
PLoS Genet ; 8(2): e1002477, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383887

RESUMO

Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.


Assuntos
Envelhecimento , Linhagem da Célula/genética , Células Germinativas , Envelhecimento/genética , Animais , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa , Células-Tronco Mesenquimais/citologia , Camundongos , Oogênese/genética , Especificidade de Órgãos , Ovário/citologia , Ovário/fisiologia , Ovulação
18.
Blood ; 120(3): 603-12, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22645183

RESUMO

Human cancers display substantial intratumoral genetic heterogeneity, which facilitates tumor survival under changing microenvironmental conditions. Tumor substructure and its effect on disease progression and relapse are incompletely understood. In the present study, a high-throughput method that uses neutral somatic mutations accumulated in individual cells to reconstruct cell lineage trees was applied to hundreds of cells of human acute leukemia harvested from multiple patients at diagnosis and at relapse. The reconstructed cell lineage trees of patients with acute myeloid leukemia showed that leukemia cells at relapse were shallow (divide rarely) compared with cells at diagnosis and were closely related to their stem cell subpopulation, implying that in these instances relapse might have originated from rarely dividing stem cells. In contrast, among patients with acute lymphoid leukemia, no differences in cell depth were observed between diagnosis and relapse. In one case of chronic myeloid leukemia, at blast crisis, most of the cells at relapse were mismatch-repair deficient. In almost all leukemia cases, > 1 lineage was observed at relapse, indicating that diverse mechanisms can promote relapse in the same patient. In conclusion, diverse relapse mechanisms can be observed by systematic reconstruction of cell lineage trees of patients with leukemia.


Assuntos
Heterogeneidade Genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Instabilidade de Microssatélites , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Antineoplásicos/uso terapêutico , Biópsia , Crise Blástica/tratamento farmacológico , Crise Blástica/genética , Crise Blástica/patologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem da Célula/genética , Resistencia a Medicamentos Antineoplásicos/genética , Citometria de Fluxo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Recidiva , Microambiente Tumoral/genética
19.
PLoS Comput Biol ; 9(11): e1003297, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244121

RESUMO

Organism cells proliferate and die to build, maintain, renew and repair it. The cellular history of an organism up to any point in time can be captured by a cell lineage tree in which vertices represent all organism cells, past and present, and directed edges represent progeny relations among them. The root represents the fertilized egg, and the leaves represent extant and dead cells. Somatic mutations accumulated during cell division endow each organism cell with a genomic signature that is unique with a very high probability. Distances between such genomic signatures can be used to reconstruct an organism's cell lineage tree. Cell populations possess unique features that are absent or rare in organism populations (e.g., the presence of stem cells and a small number of generations since the zygote) and do not undergo sexual reproduction, hence the reconstruction of cell lineage trees calls for careful examination and adaptation of the standard tools of population genetics. Our lab developed a method for reconstructing cell lineage trees by examining only mutations in highly variable microsatellite loci (MS, also called short tandem repeats, STR). In this study we use experimental data on somatic mutations in MS of individual cells in human and mice in order to validate and quantify the utility of known lineage tree reconstruction algorithms in this context. We employed extensive measurements of somatic mutations in individual cells which were isolated from healthy and diseased tissues of mice and humans. The validation was done by analyzing the ability to infer known and clear biological scenarios. In general, we found that if the biological scenario is simple, almost all algorithms tested can infer it. Another somewhat surprising conclusion is that the best algorithm among those tested is Neighbor Joining where the distance measure used is normalized absolute distance. We include our full dataset in Tables S1, S2, S3, S4, S5 to enable further analysis of this data by others.


Assuntos
Algoritmos , Linhagem da Célula/genética , Repetições de Microssatélites/genética , Mutação/genética , Filogenia , Animais , Células da Medula Óssea , Células Cultivadas , Análise por Conglomerados , Biologia Computacional/métodos , Simulação por Computador , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Genéticos
20.
PLoS Genet ; 7(7): e1002192, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21829376

RESUMO

Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems.


Assuntos
Linhagem da Célula , Colo/citologia , Células-Tronco/citologia , Animais , Linfócitos B/metabolismo , Linhagem da Célula/genética , Colo/metabolismo , Epitélio/metabolismo , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas , Células Secretoras de Insulina/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/citologia , Pâncreas/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA