Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant J ; 118(5): 1603-1618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441834

RESUMO

Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citosol , Dipeptidases , Glutationa , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glutationa/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dipeptidases/metabolismo , Dipeptidases/genética , Citosol/metabolismo , Dipeptídeos/metabolismo , Enxofre/metabolismo
2.
Plant Cell Physiol ; 65(5): 770-780, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38424724

RESUMO

Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glutationa , Folhas de Planta , Caules de Planta , Sulfatos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Sulfatos/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glutationa/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Transporte Biológico , Enxofre/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928022

RESUMO

Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato.


Assuntos
Botrytis , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Metionina , Doenças das Plantas , Reguladores de Crescimento de Plantas , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Metionina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Pseudomonas syringae/patogenicidade , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/imunologia , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
4.
Plant J ; 111(6): 1626-1642, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35932489

RESUMO

Glutathione (GSH) functions as a major sulfur repository and hence occupies an important position in primary sulfur metabolism. GSH degradation results in sulfur reallocation and is believed to be carried out mainly by γ-glutamyl cyclotransferases (GGCT2;1, GGCT2;2, and GGCT2;3), which, however, do not fully explain the rapid GSH turnover. Here, we discovered that γ-glutamyl peptidase 1 (GGP1) contributes to GSH degradation through a yeast complementation assay. Recombinant proteins of GGP1, as well as GGP3, showed high degradation activity of GSH, but not of oxidized glutathione (GSSG), in vitro. Notably, the GGP1 transcripts were highly abundant in rosette leaves, in agreement with the ggp1 mutants constantly accumulating more GSH regardless of nutritional conditions. Given the lower energy requirements of the GGP- than the GGCT-mediated pathway, the GGP-mediated pathway could be a more efficient route for GSH degradation than the GGCT-mediated pathway. Therefore, we propose a model wherein cytosolic GSH is degraded chiefly by GGP1 and likely also by GGP3. Another noteworthy fact is that GGPs are known to process GSH conjugates in glucosinolate and camalexin synthesis; indeed, we confirmed that the ggp1 mutant contained higher levels of O-acetyl-l-Ser, a signaling molecule for sulfur starvation, and lower levels of glucosinolates and their degradation products. The predicted structure of GGP1 further provided a rationale for this hypothesis. In conclusion, we suggest that GGP1 and possibly GGP3 play vital roles in both primary and secondary sulfur metabolism.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo
5.
Plant Cell Physiol ; 64(12): 1534-1550, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37464897

RESUMO

Glucosinolates (GSLs) are sulfur (S)-rich specialized metabolites present in Brassicales order plants. Our previous study found that GSL can function as a S source in Arabidopsis seedlings via its catabolism catalyzed by two ß-glucosidases (BGLUs), BGLU28 and BGLU30. However, as GSL profiles in plants vary among growth stages and organs, the potential contribution of BGLU28/30-dependent GSL catabolism at the reproductive growth stage needs verification. Thus, in this study, we assessed growth, metabolic and transcriptional phenotypes of mature bglu28/30 double mutants grown under different S conditions. Our results showed that compared to wild-type plants grown under -S, mature bglu28/30 mutants displayed impaired growth and accumulated increased levels of GSL in their reproductive organs and rosette leaves of before-bolting plants. In contrast, the levels of primary S-containing metabolites, glutathione and cysteine decreased in their mature seeds. Furthermore, the transport of GSL from rosette leaves to the reproductive organs was stimulated in the bglu28/30 mutants under -S. Transcriptome analysis revealed that genes related to other biological processes, such as ethylene response, defense response and plant response to heat, responded differentially to -S in the bglu28/30 mutants. Altogether, these findings broadened our understanding of the roles of BGLU28/30-dependent GSL catabolism in plant adaptation to nutrient stress.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Perfilação da Expressão Gênica , Enxofre/metabolismo
6.
Biochem Biophys Res Commun ; 677: 149-154, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586213

RESUMO

Glucosinolates (GSLs), a class of secondary metabolites found in Brassicaceae plants, play important roles in plant defense and contribute distinct flavors and aromas when used as food ingredients. Following tissue damage, GSLs undergo enzymatic hydrolysis to release bioactive volatile compounds. Understanding GSL biosynthesis and enzyme involvement is crucial for improving crop quality and advancing agriculture. Plant sulfotransferases (SOTs) play a key role in the final step of GSL biosynthesis by transferring sulfate groups to the precursor molecules. In the present study, we investigated the enzymatic reaction mechanism and broad substrate specificity of Arabidopsis thaliana sulfotransferase AtSOT16, which is involved in GSL biosynthesis, using crystal structure analysis. Our analysis revealed the specific catalytic residues involved in the sulfate transfer reaction and supported the hypothesis of a concerted acid-base catalytic mechanism. Furthermore, the docking models showed a strong correlation between the substrates with high predicted binding affinities and those experimentally reported to exhibit high activity. These findings provide valuable insights into the enzymatic reaction mechanisms and substrate specificity of GSL biosynthesis. The information obtained in this study may contribute to the development of novel strategies for manipulating GSL synthesis pathways in Brassica plants and has potential agricultural applications.


Assuntos
Arabidopsis , Brassica , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Brassica/metabolismo , Sulfotransferases/metabolismo
7.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240381

RESUMO

Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid (SA)-mediated signaling pathway. Here, we characterized 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) as an effective SAR inducer in Arabidopsis. The soil drench application of CMPA enhanced a broad range of disease resistance against the bacterial pathogen Pseudomonas syringae and fungal pathogens Colletotrichum higginsianum and Botrytis cinerea in Arabidopsis, whereas CMPA did not show antibacterial activity. Foliar spraying with CMPA induced the expression of SA-responsible genes such as PR1, PR2 and PR5. The effects of CMPA on resistance against the bacterial pathogen and the expression of PR genes were observed in the SA biosynthesis mutant, however, while they were not observed in the SA-receptor-deficient npr1 mutant. Thus, these findings indicate that CMPA induces SAR by triggering the downstream signaling of SA biosynthesis in the SA-mediated signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Resistência à Doença/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pseudomonas syringae/metabolismo , Transdução de Sinais , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Mutação
8.
Int J Mol Sci ; 23(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35563637

RESUMO

Strigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants. In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24 enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria, treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Doença/genética , Compostos Heterocíclicos com 3 Anéis , Humanos , Lactonas/metabolismo , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
9.
Biosci Biotechnol Biochem ; 85(12): 2434-2441, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34506620

RESUMO

Rapeseed contains high levels of glucosinolates (GSLs), playing pivotal roles in defense against herbivores and pests. As their presence in rapeseed reduces the value of the meal for animal feeding, intensive efforts to reduce them produced low-seed GSL cultivars. However, there is no such variety suitable for the south part of Japan. Here, we tested the effects of cold oxygen plasma (oxygen CP) on seed germination and GSL and lipid content, in 3 rapeseed cultivars. According to the cultivars, oxygen CP slightly stimulated seed germination and modified the GSL levels, and decreased GSL levels in Kizakinonatane but increased those in Nanashikibu. In contrast, it negligibly affected the lipid content and composition in the 3 cultivars. Thus, oxygen CP modulated seed GSL levels without affecting seed viability and lipid content. Future optimization of this technique may help optimize rapeseed GSL content without plant breeding.


Assuntos
Glucosinolatos
10.
Plant Cell Physiol ; 61(6): 1095-1106, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255184

RESUMO

Glucosinolates (GSLs) are secondary metabolites that play important roles in plant defense and are suggested to act as storage compounds. Despite their important roles, metabolic dynamics of GSLs under various growth conditions remain poorly understood. To determine how light conditions influence the levels of different GSLs and their distribution in Arabidopsis leaves, we visualized the GSLs under different light conditions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We observed the unique distribution patterns of each GSL in the inner regions of leaves and marked decreases under darkness, indicating light conditions influenced GSL metabolism. GSLs are hydrolyzed by a group of ß-glucosidase (BGLU) called myrosinase. Previous transcriptome data for GSL metabolism under light and dark conditions have revealed the highly induced expression of BGLU30, one of the putative myrosinases, which is also annotated as Dark INducible2, under darkness. Impairment of the darkness-induced GSL decrease in the disruption mutants of BGLU30, bglu30, indicated that BGLU30 mediated GSL hydrolysis under darkness. Based on the GSL profiles in the wild-type and bglu30 leaves under both conditions, short-chain GSLs were potentially preferable substrates for BGLU30. Our findings provide an effective way of visualizing GSL distribution in plants and highlighted the carbon storage GSL function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glucosinolatos/metabolismo , Folhas de Planta/metabolismo , Celulases , Cisteína/metabolismo , Escuridão , Glutationa/metabolismo , Metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Plant Cell Physiol ; 61(4): 803-813, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049325

RESUMO

Sulfur (S) is an essential element for plants, and S deficiency causes severe growth retardation. Although the catabolic process of glucosinolates (GSLs), the major S-containing metabolites specific to Brassicales including Arabidopsis, has been recognized as one of the S deficiency (-S) responses in plants, the physiological function of this metabolic process is not clear. Two ß-glucosidases (BGLUs), BGLU28 and BGLU30, are assumed to be responsible for this catabolic process as their transcript levels were highly upregulated by -S. To clarify the physiological function of BGLU28 and BGLU30 and their roles in GSL catabolism, we analyzed the accumulation of GSLs and other S-containing compounds in the single and double mutant lines of BGLU28 and BGLU30 and in wild-type plants under different S conditions. GSL levels were highly increased, while the levels of sulfate, cysteine, glutathione and protein were decreased in the double mutant line of BGLU28 and BGLU30 (bglu28/30) under -S. Furthermore, transcript level of Sulfate Transporter1;2, the main contributor of sulfate uptake from the environment, was increased in bglu28/30 mutants under -S. With these metabolic and transcriptional changes, bglu28/30 mutants displayed obvious growth retardation under -S. Overall, our results indicate that BGLU28 and BGLU30 are required for -S-induced GSL catabolism and contribute to sustained plant growth under -S by recycling sulfate to primary S metabolism.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Celulases/metabolismo , Glucosinolatos/metabolismo , Desenvolvimento Vegetal/genética , Enxofre/deficiência , Enxofre/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Sulfatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Biosci Biotechnol Biochem ; 84(7): 1427-1435, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32281486

RESUMO

A newly identified chemical, 4-{3-[(3,5-dichloro-2-hydroxybenzylidene)amino]propyl}-4,5-dihydro-1H-pyrazol-5-one (BAPP) was characterized as a plant immunity activator. BAPP enhanced disease resistance in rice against rice blast disease and expression of a defense-related gene without growth inhibition. Moreover, BAPP was able to enhance disease resistance in dicotyledonous tomato and Arabidopsis plants against bacterial pathogen without growth inhibition, suggesting that BAPP could be a candidate as an effective plant activator. Analysis using Arabidopsis sid2-1 and npr1-2 mutants suggested that BAPP induced systemic acquired resistance (SAR) by stimulating between salicylic acid biosynthesis and NPR1, the SA receptor protein, in the SAR signaling pathway.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Resistência à Doença/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/imunologia , Pirazóis/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/imunologia , Tiazóis/farmacologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/patogenicidade , Resistência à Doença/imunologia , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423011

RESUMO

Sulfur is an essential element required for plant growth. It can be found as a thiol group of proteins or non-protein molecules, and as various sulfur-containing small biomolecules, including iron-sulfur (Fe/S) clusters, molybdenum cofactor (Moco), and sulfur-modified nucleotides. Thiol-mediated redox regulation has been well investigated, whereas biosynthesis pathways of the sulfur-containing small biomolecules have not yet been clearly described. In order to understand overall sulfur transfer processes in plant cells, it is important to elucidate the relationships among various sulfur delivery pathways as well as to investigate their interactions. In this review, we summarize the information from recent studies on the biosynthesis pathways of several sulfur-containing small biomolecules and the proteins participating in these processes. In addition, we show characteristic features of gene expression in Arabidopsis at the early stage of sulfate depletion from the medium, and we provide insights into sulfur transfer processes in plant cells.


Assuntos
Liases de Carbono-Enxofre/biossíntese , Proteínas Ferro-Enxofre/biossíntese , Enxofre/metabolismo , Sulfurtransferases/biossíntese , Vias Biossintéticas/genética , Liases de Carbono-Enxofre/genética , Coenzimas , Proteínas Ferro-Enxofre/genética , Metaloproteínas , Cofatores de Molibdênio , Plantas/metabolismo , Pteridinas , Compostos de Sulfidrila/metabolismo , Sulfurtransferases/genética
14.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340187

RESUMO

Recent studies have shown various metabolic and transcriptomic interactions between sulfur (S) and phosphorus (P) in plants. However, most studies have focused on the effects of phosphate (Pi) availability and P signaling pathways on S homeostasis, whereas the effects of S availability on P homeostasis remain largely unknown. In this study, we investigated the interactions between S and P from the perspective of S availability. We investigated the effects of S availability on Pi uptake, transport, and accumulation in Arabidopsis thaliana grown under sulfur sufficiency (+S) and deficiency (-S). Total P in shoots was significantly increased under -S owing to higher Pi accumulation. This accumulation was facilitated by increased Pi uptake under -S. In addition, -S increased root-to-shoot Pi transport, which was indicated by the increased Pi levels in xylem sap under -S. The -S-increased Pi level in the xylem sap was diminished in the disruption lines of PHT1;9 and PHO1, which are involved in root-to-shoot Pi transport. Our findings indicate a new aspect of the interaction between S and P by listing the increased Pi accumulation as part of -S responses and by highlighting the effects of -S on Pi uptake, transport, and homeostasis.


Assuntos
Arabidopsis/metabolismo , Fosfatos/metabolismo , Enxofre/deficiência , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Enxofre/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant Cell ; 27(4): 1279-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25855406

RESUMO

Under sulfur deficiency (-S), plants induce expression of the sulfate transport systems in roots to increase uptake and root-to-shoot transport of sulfate. The low-affinity sulfate transporter SULTR2;1 is predominantly expressed in xylem parenchyma and pericycle cells in Arabidopsis thaliana roots under -S. The mechanisms underlying -S-inducible expression of SULTR2;1 in roots have remained unclear, despite the possible significance of SULTR2;1 for acclimation to low-sulfur conditions. In this investigation, examination of deletions and base substitutions in the 3'-intergenic region of SULTR2;1 revealed novel sulfur-responsive elements, SURE21A (5'-CAATGTATC-3') and SURE21B (5'-CTAGTAC-3'), located downstream of the SULTR2;1 3'-untranslated region. SURE21A and SULTR21B effectively induced reporter gene expression from fusion constructs under -S in combination with minimal promoters or promoters not inducible by -S, suggesting their versatility in controlling transcription. T-DNA insertions near SURE21A and SULTR21B abolished -S-inducible expression of SULTR2;1 in roots and reduced the uptake and root-to-shoot transport of sulfate. In addition, these mutations partially suppressed SULTR2;1 expression in shoots, without changing its -S-responsive expression. These findings indicate that SULTR2;1 contributes to the increase in uptake and internal translocation of sulfate driven by gene expression induced under the control of sulfur-responsive elements in the 3'-nontranscribed intergenic region of SULTR2;1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Enxofre/deficiência , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética
16.
Plant Cell Physiol ; 57(11): 2353-2366, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27590710

RESUMO

Cadmium (Cd) is a highly toxic and non-essential element for plants, whereas phytochelatins and glutathione are low-molecular-weight sulfur compounds that function as chelators and play important roles in detoxification. Cadmium exposure is known to induce the expression of sulfur-assimilating enzymes and sulfate uptake by roots. However, the molecular mechanism underlying Cd-induced changes remains largely unknown. Accordingly, we analyzed the effects of Cd treatment on the uptake and translocation of sulfate and accumulation of thiols in Arabidopsis thaliana Both wild type (WT) and null mutant (sel1-10 and sel1-18) plants of the sulfate transporter SULTR1;2 exhibited growth inhibition when treated with CdCl2 However, the mutant plants exhibited a lower growth rate and lower Cd accumulation. Cadmium treatment also upregulated the transcription of SULTR1;2 and sulfate uptake activity in WT plants, but not in mutant plants. In addition, the sulfate, phytochelatin and total sulfur contents were preferentially accumulated in the shoots of both WT and mutant plants treated with CdCl2, and sulfur K-edge XANES spectra suggested that sulfate was the main compound responsible for the increased sulfur content in the shoots of CdCl2-treated plants. Our results demonstrate that Cd-induced sulfate uptake depends on SULTR1;2 activity, and that CdCl2 treatment greatly shifts the distribution of sulfate to shoots, increases the sulfate concentration of xylem sap and upregulates the expression of SULTRs involved in root-to-shoot sulfate transport. Therefore, we conclude that root-to-shoot sulfate transport is stimulated by Cd and suggest that the uptake and translocation of sulfate in CdCl2-treated plants are enhanced by demand-driven regulatory networks.


Assuntos
Arabidopsis/metabolismo , Cádmio/farmacologia , Sulfatos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Mutação/genética , Especificidade de Órgãos/efeitos dos fármacos , Fitoquelatinas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Xilema/efeitos dos fármacos , Xilema/metabolismo
17.
Plants (Basel) ; 11(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235462

RESUMO

Sulfur LIMitation1 (SLIM1) transcription factor coordinates gene expression in plants in response to sulfur deficiency (-S). SLIM1 belongs to the family of plant-specific EIL transcription factors with EIN3 and EIL1, which regulate the ethylene-responsive gene expression. The EIL domains consist of DNA binding and dimerization domains highly conserved among EIL family members, while the N- and C-terminal regions are structurally variable and postulated to have regulatory roles in this protein family, such that the EIN3 C-terminal region is essential for its ethylene-responsive activation. In this study, we focused on the roles of the SLIM1 C-terminal region. We examined the transactivation activity of the full-length and the truncated SLIM1 in yeast and Arabidopsis. The full-length SLIM1 and the truncated form of SLIM1 with a deletion of C-terminal 106 amino acids (ΔC105) transactivated the reporter gene expression in yeast when they were fused to the GAL4 DNA binding domain, whereas the deletion of additional 15 amino acids to remove the C-terminal 120 amino acids (ΔC120) eliminated such an activity, identifying the necessity of that 15-amino-acid segment for transactivation. In the Arabidopsis slim1-2 mutant, the transcript levels of SULTR1;2 sulfate transporter and the GFP expression derived from the SULTR1;2 promoter-GFP (PSULTR1;2-GFP) transgene construct were restored under -S by introducing the full-length SLIM1, but not with the C-terminal truncated forms ΔC105 and ΔC57. Furthermore, the transcript levels of -S-responsive genes were restored concomitantly with an increase in glutathione accumulation in the complementing lines with the full-length SLIM1 but not with ΔC57. The C-terminal 57 amino acids of SLIM1 were also shown to be necessary for transactivation of a -S-inducible gene, SHM7/MSA1, in a transient expression system using the SHM7/MSA1 promoter-GUS as a reporter. These findings suggest that the C-terminal region is essential for the SLIM1 activity.

18.
Plants (Basel) ; 10(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685947

RESUMO

High-salinity stress represses plant growth by inhibiting various metabolic processes. In contrast to the well-studied mechanisms mediating tolerance to high levels of salt, the effects of low levels of salts have not been well studied. In this study, we examined the growth of Arabidopsis thaliana plants under different NaCl concentrations. Interestingly, both shoot and root biomass increased in the presence of 5 mM NaCl, whereas more than 10 mM NaCl decreased plant biomass. To clarify the biological mechanism by which a low level of NaCl stimulated plant growth, we analyzed element accumulation in plants grown under different NaCl concentrations. In addition to the Na and Cl contents, C, S, Zn, and Cu contents were increased under 5 mM NaCl in shoots; this was not observed at higher NaCl concentrations. Adverse effects of high salinity, such as decreased levels of nitrate, phosphate, sulfate, and some cations, did not occur in the presence of 5 mM NaCl. An increase in C was possibly attributed to increased photosynthesis supported by Cl, Zn, and Cu, which also increased in shoots after NaCl application. Salt stress-responsive gene expression was enhanced under 20 mM NaCl but not at lower doses. Among the S metabolites analyzed, cysteine (Cys) was increased by 5 mM NaCl, suggesting that S assimilation was promoted by this dose of NaCl. These results indicate the usefulness of NaCl for plant growth stimulation.

19.
Plant J ; 57(2): 313-21, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18801012

RESUMO

Plants play an important role in the global sulphur cycle because they assimilate sulphur from the environment and build it into methionine and cysteine. Several genes of the sulphur assimilation pathway are regulated by microRNA-395 (miR395) that is itself induced by a low-sulphur (-S) environment. Here, we show that the six Arabidopsis miR395 loci are induced differently. We find that MIR395 loci are expressed in the vascular system of roots and leaves and root tips. Induction of miR395 by a -S environment in both roots and leaves suggests that translocation of miR395 from leaves to roots through the phloem is not necessary for plants growing on -S soil/medium. We also demonstrate that induction of miR395 is controlled by SLIM1, a key transcription factor in the sulphur assimilation pathway. Unexpectedly, the mRNA level of a miR395 target gene, SULTR2;1, strongly increases during miR395 induction in roots. We show that the spatial expression pattern of MIR395 transcripts in the vascular system does not appear to overlap with the expression pattern previously reported for SULTR2;1 mRNA. These results illustrate that negative temporal correlation between the expression level of a miRNA and its target gene in a complex tissue cannot be a requirement for target gene validation.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Enxofre/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Transportadores de Sulfato , Fatores de Transcrição/metabolismo
20.
Plants (Basel) ; 9(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013219

RESUMO

Sulfur (S) assimilation, which is initiated by sulfate uptake, generates cysteine, the substrate for glutathione (GSH) and phytochelatin (PC) synthesis. GSH and PC contribute to cadmium (Cd) detoxification by capturing it for sequestration. Although Cd exposure is known to induce the expression of S-assimilating enzyme genes, including sulfate transporters (SULTRs), mechanisms of their transcriptional regulation are not well understood. Transcription factor SLIM1 controls transcriptional changes during S deficiency (-S) in Arabidopsis thaliana. We examined the potential involvement of SLIM1 in inducing the S assimilation pathway and PC accumulation. Cd treatment reduced the shoot fresh weight in the sulfur limitation1 (slim1) mutant but not in the parental line (1;2PGN). Cd-induced increases of sulfate uptake and SULTR1;2 expressions were diminished in the slim1 mutant, suggesting that SLIM1 is involved in inducing sulfate uptake during Cd exposure. The GSH and PC levels were lower in slim1 than in the parental line, indicating that SLIM1 was required for increasing PC during Cd treatment. Hence, SLIM1 indirectly contributes to Cd tolerance of plants by inducing -S responses in the cell caused by depleting the GSH pool, which is consumed by enhanced PC synthesis and sequestration to the vacuole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA