Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273584

RESUMO

Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism affecting fatty acid and amino acid oxidation with an incidence of 1 in 200,000 live births. MADD has three clinical phenotypes: severe neonatal-onset with or without congenital anomalies, and a milder late-onset form. Clinical diagnosis is supported by urinary organic acid and blood acylcarnitine analysis using tandem mass spectrometry in newborn screening programs. MADD is an autosomal recessive trait caused by biallelic mutations in the ETFA, ETFB, and ETFDH genes encoding the alpha and beta subunits of the electron transfer flavoprotein (ETF) and ETF-coenzyme Q oxidoreductase enzymes. Despite significant advancements in sequencing techniques, many patients remain undiagnosed, impacting their access to clinical care and genetic counseling. In this report, we achieved a definitive molecular diagnosis in a newborn by combining whole-genome sequencing (WGS) with RNA sequencing (RNA-seq). Whole-exome sequencing and next-generation gene panels fail to detect variants, possibly affecting splicing, in deep intronic regions. Here, we report a unique deep intronic mutation in intron 1 of the ETFDH gene, c.35-959A>G, in a patient with early-onset lethal MADD, resulting in pseudo-exon inclusion. The identified variant is the third mutation reported in this region, highlighting ETFDH intron 1 vulnerability. It cannot be excluded that these intronic sequence features may be more common in other genes than is currently believed. This study highlights the importance of incorporating RNA analysis into genome-wide testing to reveal the functional consequences of intronic mutations.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Íntrons , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Flavoproteínas Transferidoras de Elétrons/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Proteínas Ferro-Enxofre/genética , Íntrons/genética , Recém-Nascido , Mutação , Masculino , Feminino , Sequenciamento Completo do Genoma
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569667

RESUMO

Microcephalic Osteodysplastic Primordial Dwarfism type II (MOPDII) represents the most common form of primordial dwarfism. MOPD clinical features include severe prenatal and postnatal growth retardation, postnatal severe microcephaly, hypotonia, and an increased risk for cerebrovascular disease and insulin resistance. Autosomal recessive biallelic loss-of-function genomic variants in the centrosomal pericentrin (PCNT) gene on chromosome 21q22 cause MOPDII. Over the past decade, exome sequencing (ES) and massive RNA sequencing have been effectively employed for both the discovery of novel disease genes and to expand the genotypes of well-known diseases. In this paper we report the results both the RNA sequencing and ES of three patients affected by MOPDII with the aim of exploring whether differentially expressed genes and previously uncharacterized gene variants, in addition to PCNT pathogenic variants, could be associated with the complex phenotype of this disease. We discovered a downregulation of key factors involved in growth, such as IGF1R, IGF2R, and RAF1, in all three investigated patients. Moreover, ES identified a shortlist of genes associated with deleterious, rare variants in MOPDII patients. Our results suggest that Next Generation Sequencing (NGS) technologies can be successfully applied for the molecular characterization of the complex genotypic background of MOPDII.


Assuntos
Nanismo , Microcefalia , Osteocondrodisplasias , Humanos , Feminino , Gravidez , Microcefalia/genética , Exoma/genética , Transcriptoma , Retardo do Crescimento Fetal/genética , Nanismo/genética , Osteocondrodisplasias/genética , Genótipo , Mutação
3.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974870

RESUMO

Chemosensitivity is a crucial feature for all tumours so that they can be successfully treated, but the huge heterogeneity of these diseases, to be intended both inter- and intra-tumour, makes it a hard-to-win battle. Indeed, this genotypic and phenotypic variety, together with the adaptability of tumours, results in a plethora of chemoresistance acquisition mechanisms strongly affecting the effectiveness of treatments at different levels. Tripartite motif (TRIM) proteins are shown to be involved in some of these mechanisms thanks to their E3-ubiquitin ligase activity, but also to other activities they can exert in several cellular pathways. Undoubtedly, the ability to regulate the stability and activity of the p53 tumour suppressor protein, shared by many of the TRIMs, represents the preeminent link between this protein family and chemoresistance. Indeed, they can modulate p53 degradation, localization and subset of transactivated target genes, shifting the cellular response towards a cytoprotective or cytotoxic reaction to whatever damage induced by therapy, sometimes in a cellular-dependent way. The involvement in other chemoresistance acquisition mechanisms, independent by p53, is known, affecting pivotal processes like PI3K/Akt/NF-κB signalling transduction or Wnt/beta catenin pathway, to name a few. Hence, the inhibition or the enhancement of TRIM proteins functionality could be worth investigating to better understand chemoresistance and as a strategy to increase effectiveness of anticancer therapies.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas com Motivo Tripartido/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Mol Cancer ; 16(1): 67, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327152

RESUMO

BACKGROUND: TRIM8 plays a key role in controlling the p53 molecular switch that sustains the transcriptional activation of cell cycle arrest genes and response to chemotherapeutic drugs. The mechanisms that regulate TRIM8, especially in cancers like clear cell Renal Cell Carcinoma (ccRCC) and colorectal cancer (CRC) where it is low expressed, are still unknown. However, recent studies suggest the potential involvement of some microRNAs belonging to miR-17-92 and its paralogous clusters, which could include TRIM8 in a more complex pathway. METHODS: We used RCC and CRC cell models for in-vitro experiments, and ccRCC patients and xenograft transplanted mice for in vivo assessments. To measure microRNAs levels we performed RT-qPCR, while steady-states of TRIM8, p53, p21 and N-MYC were quantified at protein level by Western Blotting as well as at transcript level by RT-qPCR. Luciferase reporter assays were performed to assess the interaction between TRIM8 and specific miRNAs, and the potential effects of this interaction on TRIM8 expression. Moreover, we treated our cell models with conventional chemotherapeutic drugs or tyrosine kinase inhibitors, and measured their response in terms of cell proliferation by MTT and colony suppression assays. RESULTS: We showed that TRIM8 is a target of miR-17-5p and miR-106b-5p, whose expression is promoted by N-MYC, and that alterations of their levels affect cell proliferation, acting on the TRIM8 transcripts stability, as confirmed in ccRCC patients and cell lines. In addition, reducing the levels of miR-17-5p/miR-106b-5p, we increased the chemo-sensitivity of RCC/CRC-derived cells to anti-tumour drugs used in the clinic. Intriguingly, this occurs, on one hand, by recovering the p53 tumour suppressor activity in a TRIM8-dependent fashion and, on the other hand, by promoting the transcription of miR-34a that turns off the oncogenic action of N-MYC. This ultimately leads to cell proliferation reduction or block, observed also in colon cancer xenografts overexpressing TRIM8. CONCLUSIONS: In this paper we provided evidence that TRIM8 and its regulators miR-17-5p and miR-106b-5 participate to a feedback loop controlling cell proliferation through the reciprocal modulation of p53, miR-34a and N-MYC. Our experiments pointed out that this axis is pivotal in defining drug responsiveness of cancers such ccRCC and CRC.


Assuntos
Proteínas de Transporte/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Interferência de RNA , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
BMC Bioinformatics ; 17(Suppl 12): 345, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28185579

RESUMO

BACKGROUND: When the reads obtained from high-throughput RNA sequencing are mapped against a reference database, a significant proportion of them - known as multireads - can map to more than one reference sequence. These multireads originate from gene duplications, repetitive regions or overlapping genes. Removing the multireads from the mapping results, in RNA-Seq analyses, causes an underestimation of the read counts, while estimating the real read count can lead to false positives during the detection of differentially expressed sequences. RESULTS: We present an innovative approach to deal with multireads and evaluate differential expression events, entirely based on fuzzy set theory. Since multireads cause uncertainty in the estimation of read counts during gene expression computation, they can also influence the reliability of differential expression analysis results, by producing false positives. Our method manages the uncertainty in gene expression estimation by defining the fuzzy read counts and evaluates the possibility of a gene to be differentially expressed with three fuzzy concepts: over-expression, same-expression and under-expression. The output of the method is a list of differentially expressed genes enriched with information about the uncertainty of the results due to the multiread presence. We have tested the method on RNA-Seq data designed for case-control studies and we have compared the obtained results with other existing tools for read count estimation and differential expression analysis. CONCLUSIONS: The management of multireads with the use of fuzzy sets allows to obtain a list of differential expression events which takes in account the uncertainty in the results caused by the presence of multireads. Such additional information can be used by the biologists when they have to select the most relevant differential expression events to validate with laboratory assays. Our method can be used to compute reliable differential expression events and to highlight possible false positives in the lists of differentially expressed genes computed with other tools.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Software
6.
Pathol Res Pract ; 262: 155491, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126835

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs that act as important regulators of gene expression, involved in various biological pathways. Aberrant miRNAs expression is associated with the onset and progression of colorectal cancer (CRC). The aim of this study was to investigate the correlation between five miRNAs (miR-29a, miR-101, miR-125b, miR-146a, and miR-155), found to be deregulated in tissue samples of CRC patients, and clinicopathological characteristics and histological markers. Analysis of histological markers was performed by immunohistochemical staining of tumour tissues with Ki-67, p53, CD34, and Bcl-2. Our findings revealed a significant negative correlation between miR-29a expression and Bcl-2 levels. Furthermore, high miR-29a expression was associated with a lower incidence of distant metastasis in CRC patients. We observed negative correlations between miR-101 expression and the number of lymph nodes with metastasis, as well as the size of the largest metastasis; miR-125b expression and lymphovascular invasion; and miR-155 expression and mucus presence. Our survival analysis demonstrated that high miR-29a expression correlated with better progression-free survival of CRC patients, underscoring its potential as a prognostic marker. Our study unveiled intricate relationships between specific miRNA expressions and clinicopathological features in CRC, highlighting the potential utility of miR-29a as a valuable prognostic biomarker.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , MicroRNAs , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Feminino , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Idoso , Regulação Neoplásica da Expressão Gênica , Adulto , Idoso de 80 Anos ou mais
7.
J Mol Med (Berl) ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294414

RESUMO

COVID-19 pandemic is caused by the SARS-CoV-2 virus, whose internalization and infection are mediated by the angiotensin-converting enzyme 2 (ACE2). The identification of novel approaches to tackle this step is instrumental for the development of therapies for the management of COVID-19 and other diseases with a similar mechanism of infection. Thalidomide, a drug sadly known for its teratogenic effects, has potent immunomodulatory and anti-inflammatory properties. Treatment with this drug has been shown to improve the immune functions of COVID-19 patients and proposed for the management of COVID-19 in clinical practice through drug repositioning. Here, we investigated the molecular details linking thalidomide to ACE2 and COVID-19, showing that in conditions mimicking SARS-CoV-2-associated cytokine storm, the transcription factor ΔNp63α and ACE2 are stabilized, and IL-8 production is increased. In such conditions, we found p63 to bind to and regulate the expression of the ACE2 gene. We previously showed that ΔNp63α is degraded upon thalidomide treatment and now found that treatment with this drug-or with its analogue lenalidomide-downregulates ACE2 in a p63-dependent manner. Finally, we found that thalidomide treatment reduces in vitro infection by pseudo-SARS-CoV-2, a baculovirus pseudotyped with the SARS-CoV-2 spike protein. Overall, we propose the dual effect of thalidomide in reducing SARS-CoV-2 viral re-entry and inflammation through p63 degradation to weaken SARS-CoV-2 entry into host cells and mitigate lung inflammation, making it a valuable option in clinical management of COVID-19. KEY MESSAGES: Thalidomide treatment results in p63-dependent ACE2 downregulation. ACE2 is a p63 transcriptional target. Thalidomide reduces the "cytokine storm" associated to COVID-19. Thalidomide prevents viral re-entry of SARS-CoV-2 by p63-dependent ACE2 downregulation. Thalidomide is a modulator of SARS-CoV-2 or other ACE2-dependent infections. ACE2 is modulated by a pharmacological substance.

8.
BMC Genomics ; 14: 855, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24308330

RESUMO

BACKGROUND: Recent studies have demonstrated an unexpected complexity of transcription in eukaryotes. The majority of the genome is transcribed and only a little fraction of these transcripts is annotated as protein coding genes and their splice variants. Indeed, most transcripts are the result of antisense, overlapping and non-coding RNA expression. In this frame, one of the key aims of high throughput transcriptome sequencing is the detection of all RNA species present in the cell and the first crucial step for RNA-seq users is represented by the choice of the strategy for cDNA library construction. The protocols developed so far provide the utilization of the entire library for a single sequencing run with a specific platform. RESULTS: We set up a unique protocol to generate and amplify a strand-specific cDNA library representative of all RNA species that may be implemented with all major platforms currently available on the market (Roche 454, Illumina, ABI/SOLiD). Our method is reproducible, fast, easy-to-perform and even allows to start from low input total RNA. Furthermore, we provide a suitable bioinformatics tool for the analysis of the sequences produced following this protocol. CONCLUSION: We tested the efficiency of our strategy, showing that our method is platform-independent, thus allowing the simultaneous analysis of the same sample with different NGS technologies, and providing an accurate quantitative and qualitative portrait of complex whole transcriptomes.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Anotação de Sequência Molecular
9.
Clin Dev Immunol ; 2013: 575936, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762093

RESUMO

In the last years, new evidences of the relationship between immune system and bone have been accumulated both in animal models and in humans affected by bone disease, such as rheumatoid arthritis, bone metastasis, periodontitis, and osteoporosis. Osteoporosis is characterized by low bone mass and microarchitectural deterioration of bone tissue with a subsequent increase in bone fragility and susceptibility to fractures. The combined effects of estrogen deprivation and raising of FSH production occurring in menopause cause a marked stimulation of bone resorption and a rapid bone loss which is central for the onset of postmenopausal osteoporosis. This review focuses on the role of immune system in postmenopausal osteoporosis and on therapeutic strategies targeting osteoimmunology pathways.


Assuntos
Reabsorção Óssea/imunologia , Osso e Ossos/imunologia , Fraturas Ósseas/imunologia , Sistema Imunitário/patologia , Osteoporose Pós-Menopausa/imunologia , Densidade Óssea/imunologia , Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Estrogênios/deficiência , Estrogênios/imunologia , Feminino , Hormônio Foliculoestimulante/biossíntese , Hormônio Foliculoestimulante/imunologia , Fraturas Ósseas/patologia , Fraturas Ósseas/prevenção & controle , Humanos , Sistema Imunitário/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/imunologia , Osteoclastos/patologia , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/patologia , Pós-Menopausa/imunologia
10.
J Pediatr Endocrinol Metab ; 26(7-8): 771-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23612698

RESUMO

We report the case of a boy affected by severe intrauterine and postnatal growth retardation, microcephaly, facial dysmorphisms and postnecrotic cirrhosis, diagnosed at birth as having Seckel syndrome, and subsequently confirmed as Majewski osteodysplastic primordial dwarfism type II (MOPD II) on the basis of clinical and radiological features of skeletal dysplasia. At our observation (6 years 7 months) he presented height -10.3 standard deviation score (SDS), weight -22.1 SDS, head circumference -8 SDS, delayed bone age of 4 years with respect to chronological age. In consideration of the low levels of insulin-like growth factor-1 (IGF-1) as well as of hepatic insufficiency, we started the treatment with recombinant human IGF-1 (rhIGF-1) at the dose of 0.04 mg/kg in 2 doses/day, with an increase of 0.04 mg/kg after 1 week until the maximum dose of 0.12 mg/kg. We observed an early response to rhIGF-1 treatment, with a shift of height velocity from 1.8 cm/year (-4.6 SDS) at 4 cm/year (-1.9 SDS), and an increase in bone age of 1.5 years during the first 6 months. rhIGF-1 treatment does not seem to be able to replace the physiological action of IGF-1 in patients with MOPD II and hepatic insufficiency, however, it seems to preserve the typical growth pattern of MOPD II patients, avoiding a further widening of the growth deficiency in these subjects.


Assuntos
Nanismo/tratamento farmacológico , Retardo do Crescimento Fetal/tratamento farmacológico , Insuficiência Hepática/tratamento farmacológico , Fator de Crescimento Insulin-Like I/uso terapêutico , Microcefalia/tratamento farmacológico , Osteocondrodisplasias/tratamento farmacológico , Estatura/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Criança , Nanismo/fisiopatologia , Retardo do Crescimento Fetal/fisiopatologia , Insuficiência Hepática/fisiopatologia , Humanos , Masculino , Microcefalia/fisiopatologia , Osteocondrodisplasias/fisiopatologia , Proteínas Recombinantes/uso terapêutico
11.
Oncol Lett ; 25(6): 267, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37216163

RESUMO

Despite recent advances in diagnosis and treatment, colorectal cancer (CRC) remains the third most common cancer worldwide, and has both a poor prognosis and a high recurrence rate, thus indicating the need for new, sensitive and specific biomarkers. MicroRNAs (miRNAs/miRs) are important regulators of gene expression, which are involved in numerous biological processes implicated in tumorigenesis. The objective of the present study was to investigate the expression of miRNAs in plasma and tissue samples from patients with CRC, and to examine their potential as CRC biomarkers. Using reverse transcription-quantitative PCR, it was revealed that miR-29a, miR-101, miR-125b, miR-146a and miR-155 were dysregulated in the formalin-fixed paraffin-embedded tissues of patients with CRC, compared with the surrounding healthy tissue, and these miRNAs were associated with several pathological features of the tumor. Bioinformatics analysis of overlapping target genes identified AGE-RAGE signaling as a putative joint regulatory pathway. miR-146a was also upregulated in the plasma of patients with CRC, compared with the healthy control group, and had a fair discriminatory power (area under the curve, 0.7006), with 66.7% sensitivity and 77.8% specificity. To the best of our knowledge, this distinct five-miRNA deregulation pattern in tumor tissue, and upregulation of plasma miR-146a, were shown for the first time in patients with CRC; however, studies on larger patient cohorts are warranted to confirm their potential to be used as CRC diagnostic biomarkers.

12.
Neurosci Biobehav Rev ; 149: 105156, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019246

RESUMO

Children and adolescents with neurodevelopmental disorders generally show adaptive, cognitive and motor skills impairments associated with behavioral problems, i.e., alterations in attention, anxiety and stress regulation, emotional and social relationships, which strongly limit their quality of life. This narrative review aims at providing a critical overview of the current knowledge in the field of serious games (SGs), known as digital instructional interactive videogames, applied to neurodevelopmental disorders. Indeed, a growing number of studies is drawing attention to SGs as innovative and promising interventions in managing neurobehavioral and cognitive disturbs in children with neurodevelopmental disorders. Accordingly, we provide a literature overview of the current evidence regarding the actions and the effects of SGs. In addition, we describe neurobehavioral alterations occurring in some specific neurodevelopmental disorders for which a possible therapeutic use of SGs has been suggested. Finally, we discuss findings obtained in clinical trials using SGs as digital therapeutics in neurodevelopment disorders and suggest new directions and hypotheses for future studies to bridge the gaps between clinical research and clinical practice.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Criança , Adolescente , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Qualidade de Vida , Transtornos do Neurodesenvolvimento/terapia , Relações Interpessoais , Ansiedade
13.
J Alzheimers Dis ; 90(2): 625-638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155522

RESUMO

BACKGROUND: Pathological and clinical features of Alzheimer's disease (AD) are in temporal discrepancy and currently accepted clinical tests provide the diagnosis decades after the initial pathophysiological events. In order to enable a more timely detection of AD, research efforts are directed to identification of biomarkers of the early symptomatic stage. Neuroinflammatory signaling pathways and inflammation-related microRNAs (miRNAs) could possibly have a crucial role in AD, making them promising potential biomarkers. OBJECTIVE: We examined the expression of circulatory miRNAs with a documented role in AD pathophysiology: miR-29a/b, miR-101, miR-125b, miR-146a, and miR-155 in the plasma of AD patients (AD, n = 12), people with mild cognitive impairment (MCI, n = 9), and normocognitive group (CTRL, n = 18). We hypothesized that these miRNA expression levels could correlate with the level of participants' cognitive decline. METHODS: The study participants completed the standardized interview, neurological examination, neuropsychological assessment, and biochemical analyses. miRNA expression levels were assessed by RT-PCR. RESULTS: Neurological and laboratory findings could not account for MCI, but miR-146a and -155 were upregulated in the MCI group compared to the control. miR-146a, known to mediate early neuroinflammatory AD events, was also upregulated in the MCI compared to AD group. ROC curve analysis for miRNA-146a showed 77.8% sensitivity and 94.4% specificity and 66.7% sensitivity and 88.9% specificity for miR-155. CONCLUSION: Determination of circulatory inflamma-miRs-146a and -155 expression, together with neuropsychological screening, could become a non-invasive tool for detecting individuals with an increased risk for AD, but research on a larger cohort is warranted.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , MicroRNAs , Idoso , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Inflamação/genética , MicroRNAs/metabolismo , Montenegro
14.
Cancers (Basel) ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36497215

RESUMO

The TP53 tumor suppressor gene is known as the guardian of the genome, playing a pivotal role in controlling genome integrity, and its functions are lost in more than 50% of human tumors due to somatic mutations. This percentage rises to 90% if mutations and alterations in the genes that code for regulators of p53 stability and activity are taken into account. Renal cell carcinoma (RCC) is a clear example of cancer that despite having a wild-type p53 shows poor prognosis because of the high rate of resistance to radiotherapy or chemotherapy, which leads to recurrence, metastasis and death. Remarkably, the fact that p53 is poorly mutated does not mean that it is functionally active, and increasing experimental evidences have demonstrated this. Therefore, RCC represents an extraordinary example of the importance of p53 pathway alterations in therapy resistance. The search for novel molecular biomarkers involved in the pathways that regulate altered p53 in RCC is mandatory for improving early diagnosis, evaluating the prognosis and developing novel potential therapeutic targets for better RCC treatment.

15.
Cells ; 11(22)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428997

RESUMO

YKL-40 is a heparin- and chitin-binding glycoprotein that belongs to the family of glycosyl hydrolases but lacks enzymatic properties. It affects different (patho)physiological processes, including cancer. In different tumors, YKL-40 gene overexpression has been linked to higher cell proliferation, angiogenesis, and vasculogenic mimicry, migration, and invasion. Because, in colorectal cancer (CRC), the serological YKL-40 level may serve as a risk predictor and prognostic biomarker, we investigated the underlying mechanisms by which it may contribute to tumor progression and the clinical significance of its tissue expression in metastatic CRC. We demonstrated that high-YKL-40-expressing HCT116 and Caco2 cells showed increased motility, invasion, and proliferation. YKL-40 upregulation was associated with EMT signaling activation. In the AOM/DSS mouse model, as well as in tumors and sera from CRC patients, elevated YKL-40 levels correlated with high-grade tumors. In retrospective analyses of six independent cohorts of CRC patients, elevated YKL-40 expression correlated with shorter survival in patients with advanced CRC. Strikingly, high YKL-40 tissue levels showed a predictive value for a better response to cetuximab, even in patients with stage IV CRC and mutant KRAS, and worse sensitivity to oxaliplatin. Taken together, our findings establish that tissue YKL-40 overexpression enhances CRC metastatic potential, highlighting this gene as a novel prognostic candidate, a predictive biomarker for therapy response, and an attractive target for future therapy in CRC.


Assuntos
Neoplasias Colorretais , Lectinas , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Biomarcadores Tumorais , Células CACO-2 , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Neoplasias Colorretais/metabolismo , Lectinas/genética , Lectinas/metabolismo , Fenótipo , Estudos Retrospectivos , Regulação para Cima
16.
Cells ; 10(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807506

RESUMO

The superfamily of TRIM (TRIpartite Motif-containing) proteins is one of the largest groups of E3 ubiquitin ligases. Among them, interest in TRIM8 has greatly increased in recent years. In this review, we analyze the regulation of TRIM8 gene expression and how it is involved in many cell reactions in response to different stimuli such as genotoxic stress and attacks by viruses or bacteria, playing a central role in the immune response and orchestrating various fundamental biological processes such as cell survival, carcinogenesis, autophagy, apoptosis, differentiation and inflammation. Moreover, we show how TRIM8 functions are not limited to ubiquitination, and contrasting data highlight its role either as an oncogene or as a tumor suppressor gene, acting as a "double-edged weapon". This is linked to its involvement in the selective regulation of three pivotal cellular signaling pathways: the p53 tumor suppressor, NF-κB and JAK-STAT pathways. Lastly, we describe how TRIM8 dysfunctions are linked to inflammatory processes, autoimmune disorders, rare developmental and cardiovascular diseases, ischemia, intellectual disability and cancer.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ubiquitinação/genética , Humanos
17.
Biomedicines ; 9(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673719

RESUMO

Colorectal cancer (CRC) represents one of the most widespread forms of cancer in the population and, as all malignant tumors, often develops resistance to chemotherapies with consequent tumor growth and spreading leading to the patient's premature death. For this reason, a great challenge is to identify new therapeutic targets, able to restore the drugs sensitivity of cancer cells. In this review, we discuss the role of TRIpartite Motifs (TRIM) proteins in cancers and in CRC chemoresistance, focusing on the tumor-suppressor role of TRIM8 protein in the reactivation of the CRC cells sensitivity to drugs currently used in the clinical practice. Since the restoration of TRIM8 protein levels in CRC cells recovers chemotherapy response, it may represent a new promising therapeutic target in the treatment of CRC.

18.
Front Genet ; 11: 552490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193626

RESUMO

MicroRNAs (miRNAs) are ubiquitous regulators of gene expression, evolutionarily conserved in plants and mammals. In recent years, although a growing number of papers debate the role of plant miRNAs on human gene expression, the molecular mechanisms through which this effect is achieved are still not completely elucidated. Some evidence suggest that this interaction might be sequence specific, and in this work, we investigated this possibility by transcriptomic and bioinformatics approaches. Plant and human miRNA sequences from primary databases were collected and compared for their similarities (global or local alignments). Out of 2,588 human miRNAs, 1,606 showed a perfect match of their seed sequence with the 5' end of 3,172 plant miRNAs. Further selections were applied based on the role of the human target genes or of the miRNA in cell cycle regulation (as an oncogene, tumor suppressor, or a biomarker for prognosis, or diagnosis in cancer). Based on these criteria, 20 human miRNAs were selected as potential functional analogous of 7 plant miRNAs, which were in turn transfected in different cell lines to evaluate their effect on cell proliferation. A significant decrease was observed in colorectal carcinoma HCT116 cell line. RNA-Seq demonstrated that 446 genes were differentially expressed 72 h after transfection. Noteworthy, we demonstrated that the plant mtr-miR-5754 and gma-miR4995 directly target the tumor-associated long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) in a sequence-specific manner. In conclusion, according to other recent discoveries, our study strengthens and expands the hypothesis that plant miRNAs can have a regulatory effect in mammals by targeting both protein-coding and non-coding RNA, thus suggesting new biotechnological applications.

19.
Data Brief ; 29: 105278, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32123709

RESUMO

Using Human Gene Expression Microarrays (Agilent) technologies, we investigated changes of the level of gene expression in peripheral blood mononuclear cells of healthy subjects after 21 days of fresh table grape-rich diet and after an additional 28-day washout. Several hundreds of genes were differentially expressed after grape intake or after washout. The functional analysis of these genes detected significant changes in key processes such as inflammation and immunity, thrombosis, DNA and protein repair, autophagy and mitochondrial biogenesis. Moreover, fresh grape intake was found to influence the expression of many long non-coding RNA genes. The data can be valuable for researchers interested in nutrigenetics and nutrigenomics studies and are related to the research article "Gene expression signature induced by grape intake in healthy subjects reveals wide-spread beneficial effects on PBMCs" [1].

20.
Front Oncol ; 9: 1154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781486

RESUMO

The p53 gene family network plays a pivotal role in the control of many biological processes and therefore the right balance between the pro-apoptotic and pro-survival isoforms is key to maintain cellular homeostasis. The stability of the p53 tumor suppressor protein and that of oncogenic ΔNp63α, is crucial to control cell proliferation. The aberrant expression of p53 tumor suppressor protein and oncogenic ΔNp63α contributes to tumorigenesis and significantly affects anticancer drug response. Recently, we demonstrated that TRIM8 increases p53 stability, potentiating its tumor suppressor activity. In this paper, we show that TRIM8 simultaneously reduces the level of the pro-proliferative ΔNp63α protein, in both a proteasomal and caspase-1 dependent way, thereby playing a critical role in the cellular response to DNA damaging agents. Moreover, we provided evidence that ΔNp63α in turn, suppresses TRIM8 gene expression by preventing p53-mediated transactivation of TRIM8, therefore suggesting the existence of a negative feedback loop. These findings indicate that TRIM8 exerts its anticancer power through a joint action that provides on one hand, the activation of the p53 tumor suppressor role, and on the other the quenching of the oncogenic ΔNp63α protein activity. The enhancement of TRIM8 activity may offer therapeutic benefits and improve the management of chemoresistant tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA