Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 61(17): 6052-6056, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37538052

RESUMO

This communication proposes a preliminary simplified kinetic model for the hydrogenation of 1-phenyl-1,2-propanedione that can render up to eight compounds, involving regioselectivity and enantioselectivity. The catalytic system comprises two functionalities; the heterogeneous catalyst (Ir/TiO2) plays the role for the hydrogenation, whereas the adsorption/binding to the active site is played by a chiral molecule (cinchonidine), added to the reaction mixture. The reaction occurs at room temperature and total pressure of 40 bar. The product distribution shows competitive parallel and series pathways with up to 12 possible reactions. Despite the complexity of both reaction and catalyst system, a simplified kinetic model was able to predict the concentrations profiles. The model assumes the reactions to be apparent first order in the concentrations of reactant and intermediate products, while the kinetic constants include all other effects (partial pressure of hydrogen, solvent and catalyst effects, and the concentration of the chiral additive). The concentration profiles were well-modeled with low residual values. The errors in the kinetic constants (k-values) were small for all relevant parameters of the main reaction pathways. Two k-values are nil, which is the lower bound imposed in the model, suggesting that these reaction pathways are likely negligible. The positive outcome from this simplified model suggests that the process can be formally treated as a first-order irreversible homogeneous catalyzed reaction, despite a heterogeneous catalyst was employed (with a modifier). Despite the promising results, the model must be extended for a more general applicability, or conditions where it is applicable.

2.
Saudi Dent J ; 33(8): 944-953, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938036

RESUMO

OBJECTIVES: The purpose of this study was (i) to investigate whether nanocomposite poly(methyl-methacrylate)-zinc oxide nanowires (PMMA-ZnO-NWs) have C. albicans antibiofilm activity; (ii) to evaluate the interaction between components of the nanocomposites based on PMMA-ZnO-NWs by Raman spectroscopy; and (iii) to assess ultrastructural alterations. DESIGN: Sixty-eight rectangles (17 PMMA (control) and 51 PMMA-ZnO-NWs (250, 500, 1000 ppm ZnO nanowires) were fabricated. C. albicans ATCC 10231 and a C. albicans clinical strain were tested. Adherence, biofilm formation and ultrastructural alterations were assessed by transmission electron microscopy. Raman mapping images and spectra were analyzed using main component analysis. RESULTS: Nanocomposite PMMA-ZnO-NWs inhibited the formation of C. albicans biofilms 94% at 1000 ppm and 80% at 500 ppm against both C. albicans strains. PMMA-ZnO-NWs induced ultrastructural alterations, including cell wall damage and disorganization of the cytoplasmic membrane, resulting in cell lysis. Raman spectroscopy showed new vibrational modes (300-365-485-600 cm-1) for PMMA and ZnO-NW interactions. CONCLUSIONS: PMMA-ZnO-NWs inhibited C. albicans dose-dependent biofilm formation and led to changes in the structures and cell membrane. Raman spectroscopy showed chemical interactions between ZnO-NWs and PMMA, as suggested by the appearance of new bands at 301 and 485 cm-1.

3.
Int. j interdiscip. dent. (Print) ; 17(1): 19-23, abr. 2024. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1558090

RESUMO

Dental composite resins may release bisphenol-A or similar molecules affecting patient health and the environment. This study measured bisphenol-A release from three commonly used in patients composite resins (Filtek™ Z350 XT, Filtek™ P60, Filtek™ Bulk Fill) immersed in three liquid mediums (artificial saliva, 0.001 M lactic acid and 15% ethanol) and assessed the changes in the surface micromorphology.The released BPA was measured by HPLC at basal time (t=0), 1 h, 1 d, 7 d and 30 d. Topographic analysis of specimens was performed by scanning electron microscopy (SEM). The data were analyzed using one-way ANOVA and Tukey post-hoc test (P < 0.05). BPA in solution increased significantly in the three DCRs immersed in 0.001 M lactic acid at all times. SEM micrographs of the specimen in 0.001 M lactic acid disclosed more structural defects than others. The surface of the three composite resins was morphologically affected by their immersion in all solutions. SEM evidenced that the dental materials underwent erosion and cracks with filler particles protruding from the surface. The morphological changes in tested dental materials produced by exposure to these solutions are potentially dangerous to patients by causing caries, infections, and partial loss of dental material.


Assuntos
Materiais Biomédicos e Odontológicos , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas
4.
Bioresour Technol ; 100(20): 4758-65, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19477123

RESUMO

The composition of solid residues from hydrolysis reactions of loblolly pine wood with dilute mineral acids is analyzed by (13)C Cross Polarization Magic Angle Spinning (CP MAS) NMR spectroscopy. Using this method, the carbohydrate and lignin fractions are quantified in less than 3h as compared to over a day using wet chemical methods. In addition to the quantitative information, (13)C CP MAS NMR spectroscopy provides information on the formation of additional extractives and pseudo lignin from the carbohydrates. Being a non-destructive technique, NMR spectroscopy provides unambiguous evidence of the presence of side reactions and products, which is a clear advantage over the wet chemical analytical methods. Quantitative results from NMR spectroscopy and proximate analysis are compared for the residues from hydrolysis of loblolly pine wood under 13 different conditions; samples were treated either at 150 degrees C or 200 degrees C in the presence of various acids (HCl, H(2)SO(4), H(3)PO(4), HNO(3) and TFA) or water. The lignin content determined by both methods differed on averaged by 2.9 wt% resulting in a standard deviation of 3.5 wt%. It is shown that solid degradation products are formed from saccharide precursors under harsh reaction conditions. These degradation reactions limit the total possible yield of monosaccharides from any subsequent reaction.


Assuntos
Ácidos/metabolismo , Pinus taeda/metabolismo , Madeira/metabolismo , Calibragem , Carboidratos/análise , Celulose/metabolismo , Hidrólise , Lignina/metabolismo , Espectroscopia de Ressonância Magnética
5.
ChemSusChem ; 2(7): 665-71, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19554606

RESUMO

The reactivity of monosaccharides, furfural, and 5-hydroxymethyl-2-furfural (HMF) in the presence of a Brønsted acid (added as H(2)SO(4)) in the ionic liquid 1-butyl-3-methylimidazolium chloride (BMImCl) is investigated at 120 °C. Fructose is converted much faster than mannose, glucose, and xylose and yields HMF with high selectivity, even in the absence of acid. Conversion of mannose, glucose, and xylose involves more complex reaction networks. Only small amounts of furfural and HMF are converted in the absence of other reactants but both compounds are consumed when monosaccharides and their degradation products are present. Acid-catalyzed degradation reactions also lead to the formation of solid residues (humins).


Assuntos
Furanos/síntese química , Imidazóis/química , Monossacarídeos/química , Ácidos Sulfúricos/química , Catálise , Furanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA