Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 114(3): 576-588, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27642072

RESUMO

Contamination by the parvovirus minute virus of mice (MVM) remains a challenge in Chinese hamster ovary (CHO) biopharmaceutical production processes. Although infrequent, infection of a bioreactor can be catastrophic for a manufacturer, can impact patient drug supply and safety, and can have regulatory implications. We evaluated engineering a CHO parental cell line (CHOZN® GS-/- ) to create a new host cell line that is resistant to MVM infection by modifying the major receptors used by the virus to enter cells. Attachment to a cell surface receptor is a key first step in the infection cycle for many viruses. While the exact functional receptor for MVM binding to CHO cell surface is unknown, sialic acid on the cell surface has been implicated. In this work, we used the zinc finger nuclease gene editing technology to validate the role of sialic acid on the cell surface in the binding and internalization of the MVM virus. Our approach was to systematically mutate genes involved in cell surface sialylation and then challenge each cell line for their ability to resist viral entry and propagation. To test the importance of sialylation, the following genes were knocked out: the CMP-sialic acid transporter, solute carrier family 35A1 (Slc35a1), the core 1-ß-1,3-galactosyltransferase-1 specific chaperone (Cosmc), and mannosyl (α-1,3-)-glycoprotein ß-1,2-N-acetylglucosaminyltransferase (Mgat1) as well as members of the sialyltransferase family. Slc35a1 is responsible for transporting sialic acid into the Golgi. Knocking out function of this gene in a cell results in asialylated glycan structures, thus eliminating the ability of MVM to bind to and enter the cell. The complete absence of sialic acid on the Slc35a1 knockout cell line led to complete resistance to MVM infection. The Cosmc and Mgat1 knockouts also show significant inhibition of infection likely due to their effect on decreasing cell surface sialic acid. Previously in vitro glycan analysis has been used to elucidate the precise sialic acid structures required for MVM binding and internalization. In this work, we performed the sequential knockout of various sialyltransferases that add terminal sialic acid to glycans with different linkage specificities. Cell lines with modifications of the various genes included in this study resulted in varying effects on MVM infection expanding on the knowledge of MVM receptors. MVM resistant host cell lines were also tested for the production of model recombinant proteins. Our data demonstrate that resistance against the MVM virus can be incorporated into CHO production cell lines, adding another level of defense against the devastating financial consequences of MVM infection without compromising recombinant protein yield or quality. Biotechnol. Bioeng. 2017;114: 576-588. © 2016 Wiley Periodicals, Inc.


Assuntos
Células CHO , Resistência à Doença/genética , Engenharia Genética/métodos , Interações Hospedeiro-Patógeno/genética , Vírus Miúdo do Camundongo/imunologia , Ácido N-Acetilneuramínico/genética , Animais , Cricetinae , Cricetulus , Interações Hospedeiro-Patógeno/imunologia , Modelos Biológicos , Ácido N-Acetilneuramínico/imunologia , Ácido N-Acetilneuramínico/metabolismo
2.
Nat Med ; 13(1): 70-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17173050

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL), unlike other ALL types, is only infrequently associated with chromosomal aberrations, but it was recently shown that most individuals with T-ALL carry activating mutations in the NOTCH1 gene. However, the signaling pathways and target genes responsible for Notch1-induced neoplastic transformation remain undefined. We report here that constitutively active Notch1 activates the NF-kappaB pathway transcriptionally and via the IkappaB kinase (IKK) complex, thereby causing increased expression of several well characterized target genes of NF-kappaB in bone marrow hematopoietic stem cells and progenitors. Our observations demonstrate that the NF-kappaB pathway is highly active in established human T-ALL and that inhibition of the pathway can efficiently restrict tumor growth both in vitro and in vivo. These findings identify NF-kappaB as one of the major mediators of Notch1-induced transformation and suggest that the NF-kappaB pathway is a potential target of future therapies of T-ALL.


Assuntos
Leucemia de Células T/patologia , NF-kappa B/metabolismo , Receptor Notch1/metabolismo , Animais , Ácidos Borônicos/farmacologia , Bortezomib , Antígenos CD4/análise , Antígenos CD8/análise , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Leucemia Experimental/patologia , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Mutação , Pirazinas/farmacologia , Receptor Notch1/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Análise de Sobrevida
3.
Biotechnol Prog ; 31(2): 334-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25641927

RESUMO

N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN(®) GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones ("ST6GAL1 OE Clone 31 and 32") were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of "bio-better" protein therapeutics and cell culture vaccine production.


Assuntos
Engenharia Celular/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sialiltransferases/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Engenharia Metabólica , Ácido N-Acetilneuramínico/análise , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo
4.
Cancer Res ; 68(13): 5226-35, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18593923

RESUMO

High expression of Notch-1 and Jagged-1 mRNA correlates with poor prognosis in breast cancer. Elucidating the cross-talk between Notch and other major breast cancer pathways is necessary to determine which patients may benefit from Notch inhibitors, which agents should be combined with them, and which biomarkers indicate Notch activity in vivo. We explored expression of Notch receptors and ligands in clinical specimens, as well as activity, regulation, and effectors of Notch signaling using cell lines and xenografts. Ductal and lobular carcinomas commonly expressed Notch-1, Notch-4, and Jagged-1 at variable levels. However, in breast cancer cell lines, Notch-induced transcriptional activity did not correlate with Notch receptor levels and was highest in estrogen receptor alpha-negative (ERalpha(-)), Her2/Neu nonoverexpressing cells. In ERalpha(+) cells, estradiol inhibited Notch activity and Notch-1(IC) nuclear levels and affected Notch-1 cellular distribution. Tamoxifen and raloxifene blocked this effect, reactivating Notch. Notch-1 induced Notch-4. Notch-4 expression in clinical specimens correlated with proliferation (Ki67). In MDA-MB231 (ERalpha(-)) cells, Notch-1 knockdown or gamma-secretase inhibition decreased cyclins A and B1, causing G(2) arrest, p53-independent induction of NOXA, and death. In T47D:A18 (ERalpha(+)) cells, the same targets were affected, and Notch inhibition potentiated the effects of tamoxifen. In vivo, gamma-secretase inhibitor treatment arrested the growth of MDA-MB231 tumors and, in combination with tamoxifen, caused regression of T47D:A18 tumors. Our data indicate that combinations of antiestrogens and Notch inhibitors may be effective in ERalpha(+) breast cancers and that Notch signaling is a potential therapeutic target in ERalpha(-) breast cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Receptor alfa de Estrogênio/fisiologia , Receptor Cross-Talk/fisiologia , Receptores Notch/fisiologia , Animais , Antineoplásicos Hormonais/administração & dosagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Estradiol/administração & dosagem , Estradiol/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/administração & dosagem , Receptor Notch1/metabolismo , Receptor Notch4 , Receptores Notch/antagonistas & inibidores , Receptores Notch/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA