Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 65(6): 1768-1776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587282

RESUMO

OBJECTIVE: Recent studies have identified brain somatic variants as a cause of focal epilepsy. These studies relied on resected tissue from epilepsy surgery, which is not available in most patients. The use of trace tissue adherent to depth electrodes used for stereo electroencephalography (EEG) has been proposed as an alternative but is hampered by the low cell quality and contamination by nonbrain cells. Here, we use our improved depth electrode harvesting technique that purifies neuronal nuclei to achieve molecular diagnosis in a patient with focal cortical dysplasia (FCD). METHODS: Depth electrode tips were collected, pooled by brain region and seizure onset zone, and nuclei were isolated and sorted using fluorescence-activated nuclei sorting (FANS). Somatic DNA was amplified from neuronal and astrocyte nuclei using primary template amplification followed by exome sequencing of neuronal DNA from the affected pool, unaffected pool, and saliva. The identified variant was validated using droplet digital polymerase chain reaction (PCR). RESULTS: An 11-year-old male with drug-resistant genetic-structural epilepsy due to left anterior insula FCD had seizures from age 3 years. Stereo EEG confirmed seizure onset in the left anterior insula. The two anterior insula electrodes were combined as the affected pool and three frontal electrodes as the unaffected pool. FANS isolated 140 neuronal nuclei from the affected and 245 neuronal nuclei from the unaffected pool. A novel somatic missense MTOR variant (p.Leu489Met, CADD score 23.7) was identified in the affected neuronal sample. Droplet digital PCR confirmed a mosaic gradient (variant allele frequency = .78% in affected neuronal sample; variant was absent in all other samples). SIGNIFICANCE: Our findings confirm that harvesting neuronal DNA from depth electrodes followed by molecular analysis to identify brain somatic variants is feasible. Our novel method represents a significant improvement compared to the previous method by focusing the analysis on high-quality cells of the cell type of interest.


Assuntos
Eletroencefalografia , Malformações do Desenvolvimento Cortical , Neurônios , Serina-Treonina Quinases TOR , Humanos , Masculino , Criança , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/cirurgia , Eletroencefalografia/métodos , Serina-Treonina Quinases TOR/genética , DNA/genética , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Mosaicismo , Epilepsias Parciais/genética , Epilepsias Parciais/cirurgia , Displasia Cortical Focal
2.
Epilepsia Open ; 8(2): 659-665, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36740228

RESUMO

Familial adult myoclonic epilepsy (FAME) is an adult-onset neurological disease characterized by cortical tremor, myoclonus, and seizures due to a pentanucleotide repeat expansion: a combination of pathogenic TTTCA expansion associated with a TTTTA repeat in introns of six different genes. Repeat-primed PCR (RP-PCR) is an inexpensive test for expansions at known loci. The analysis of the SAMD12 locus revealed that the repeats have different size, configuration, and composition. The TTTCA repeats can be very long (>1000 repeats) but also very short (14 being the shortest identified). Here, we report siblings of European descent with the clinical diagnosis of FAME yet a negative RP-PCR test. Using short-read genome sequencing, we identified the pentanucleotide expansion in intron 4 of SAMD12, which was confirmed by CRIPSR-Cas9-mediated enrichment and long-read sequencing to be of (TTTTA)~879 (TTTCA)3 (TTTTA)7 (TTTCA)7 configuration. Our finding is the first to associate the SAMD12 locus in European patients with FAME and currently represents the shortest identified TTTCA expansion. Our results suggest that the SAMD12 locus should be tested in patients with suspected FAME independent of ethnicity. Furthermore, RP-PCR may miss the underlying mutation, and genome sequencing may be needed to confirm the pathogenic repeat.


Assuntos
Epilepsias Mioclônicas , Adulto , Humanos , Linhagem , Epilepsias Mioclônicas/genética , Repetições de Microssatélites , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA