Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Opt Express ; 32(6): 8715-8722, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571122

RESUMO

Silicon planar waveguides are designed to maximize the wavelength conversion efficiency via the use of Raman-enhanced four-wave mixing in the telecom band. By investigating the dispersion properties of various rib waveguide structures, the optimum etch depth and width are selected to obtain efficient phase-matching for a continuous-wave pump at 1545 nm. The design benefits from good fabrication tolerance in the structural parameters, which are well within the precision of standard lithography and etching processes. Using the optimized waveguides, simulations show that it is possible to reach conversion efficiencies as high as ∼45 dB for waveguide lengths as short as 4.6 cm, with a pump power of only 130 mW. This enhancement in the conversion efficiency is about 50 dB higher than conventional values for FWM in integrated silicon photonic systems, highlighting the benefits of exploiting the coupling between the two nonlinear processes.

2.
Opt Express ; 31(10): 16162-16177, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157701

RESUMO

Stimulated Brillouin scattering (SBS), originating from the coupling between optical and acoustic waves, has been widely applied in many fields. Silicon is the most used and important material in micro-electromechanical systems (MEMS) and integrated photonic circuits. However, strong acoustic-optic interaction in silicon requires mechanical release of the silicon core waveguide to avoid acoustic energy leakage into the substrate. This will not only reduce the mechanical stability and thermal conduction, but also increase the difficulties for fabrication and large-area device integration. In this paper, we propose a silicon-aluminium nitride(AlN)-sapphire platform for realizing large SBS gain without suspending the waveguide. AlN is used as a buffer layer to reduce the phonon leakage. This platform can be fabricated via the wafer bonding between silicon and commercial AlN-sapphire wafer. We adopt a full-vectorial model to simulate the SBS gain. Both the material loss and the anchor loss of the silicon are considered. We also apply the genetic algorithm to optimize the waveguide structure. By limiting the maximum etching step number to two, we obtain a simple structure to achieve the SBS gain of 2462 W-1m-1 for forward SBS, which is 8 times larger than the recently reported result in unsuspended silicon waveguide. Our platform can enable Brillouin-related phenomena in centimetre-scale waveguides. Our findings could pave the way toward large-area unreleased opto-mechanics on silicon.

3.
Opt Express ; 30(15): 27092-27108, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236887

RESUMO

Stimulated Brillouin scattering (SBS) has been widely applied in narrow line-width laser, microwave filters, optical gyroscopes, and other fields. However, most research is limited within near-infrared to mid-infrared range. This is due to the limited transparent window in most materials, such as silicon and germanium. Aluminium nitride (AlN) is a novel III-V material with a wide transparent window from 200 nm and an appropriate refractive index to confine the light. In this paper, we first validate the full-vectorial formalism to calculate SBS gain based on the measured results from a silicon platform. Compared to previous research, our model achieves higher accuracy in terms of frequency, Q factor, as well as Brillouin gain coefficient without modifying the waveguide width. It also reveals the importance of matching rotation matrix and crystalline coordinate system. Then, we investigate the SBS in a partially suspended AlN waveguide at 450 nm based on the validated method. It shows a wide tunability in frequency from 16 GHz to 32 GHz for forward SBS and a range from 42 GHz to 49 GHz for backward SBS. We numerically obtain the value of Brillouin gain of 1311 W-1m-1 when Q factor is dominated by anchor loss for forward SBS of transverse electric mode. We also find out that in the case for forward SBS of transverse-magnetic mode, anchor loss could be greatly suppressed when the node point of the selected acoustic mode matches with the position of pillar anchor. Our findings, to the best of our knowledge, pave a new way to obtain Brillouin-related applications in integrated photonic circuit within the visible range.

4.
Opt Lett ; 47(7): 1626-1629, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363694

RESUMO

A strong Raman enhancement to the four-wave mixing (FWM) conversion efficiency is obtained in a silicon core fiber (SCF) when pumped with a continuous-wave (CW) source in the telecom band. By tapering the SCFs to alter the core diameter and length, the role of phase-matching on the conversion enhancement is investigated, with a maximum Raman enhancement of ∼15 dB obtained for an SCF with a zero dispersion wavelength close to the pump. Simulations show that by optimizing the tapered waist diameter to overlap the FWM phase-matching with the peak Raman gain, it is possible to obtain large Raman enhanced FWM conversion efficiencies of up to ∼2 dB using modest CW pump powers over wavelengths covering the extended telecom bands.

5.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559988

RESUMO

As the silicon photonics field matures and a data-hungry future looms ahead, new technologies are required to keep up pace with the increase in capacity demand. In this paper, we review current developments in the near-IR and mid-IR group IV photonic modulators that show promising performance. We analyse recent trends in optical and electrical co-integration of modulators and drivers enabling modulation data rates of 112 GBaud in the near infrared. We then describe new developments in short wave infrared spectrum modulators such as employing more spectrally efficient PAM-4 coding schemes for modulations up to 40 GBaud. Finally, we review recent results at the mid infrared spectrum and application of the thermo-optic effect for modulation as well as the emergence of new platforms based on germanium to tackle the challenges of modulating light in the long wave infrared spectrum up to 10.7 µm with data rates of 225 MBaud.

6.
Opt Express ; 29(11): 16867-16878, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154239

RESUMO

In recent years, sensing and communication applications have fueled important developments of group-IV photonics in the mid-infrared band. In the long-wave range, most platforms are based on germanium, which is transparent up to ∼15-µm wavelength. However, those platforms are limited by the intrinsic losses of complementary materials or require complex fabrication processes. To overcome these limitations, we propose suspended germanium waveguides with a subwavelength metamaterial lateral cladding that simultaneously provides optical confinement and allows structural suspension. These all-germanium waveguides can be fabricated in one dry and one wet etch step. A propagation loss of 5.3 dB/cm is measured at a wavelength of 7.7 µm. These results open the door for the development of integrated devices that can be fabricated in a simple manner and can potentially cover the mid-infrared band up to ∼15 µm.

7.
Opt Express ; 29(10): 14438-14451, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985167

RESUMO

We demonstrate high-speed silicon modulators optimized for operating at the wavelength of 2 µm. The Mach-Zehnder interferometer (MZI) carrier-depletion modulator with 2 mm phase shifter has a single-arm modulation efficiency (Vπ ·Lπ) of 2.89 V·cm at 4 V reverse bias. Using a push-pull configuration it operates at a data rate of 25 Gbit/s OOK with an extinction ratio of 6.25 dB. We also proposed a mathematically-analysed streamlined IMDD PAM-4 scheme and successfully demonstrated a 25 Gbit/s datarate PAM-4 with the same 2 mm modulator. A Michelson interferometer carrier-depletion modulator with 0.5 mm phase shift length has also been shown with modulation efficiency (Vπ ·Lπ) of 1.36 V·cm at 4 V reverse bias and data rate of 20 Gbit/s OOK. The Michelson interferometer modulator performs similarly to a Mach-Zehnder modulator with twice the phase shifter length.

8.
Opt Lett ; 46(3): 677-680, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528439

RESUMO

Bolometers are thermal detectors widely applied in the mid-infrared (MIR) wavelength range. In an integrated sensing system on chip, a broadband scalable bolometer absorbing the light over the whole MIR wavelength range could play an important role. In this work, we have developed a waveguide-based bolometer operating in the wavelength range of 3.72-3.88 µm on the amorphous silicon (a-Si) platform. Significant improvements in the bolometer design result in a 20× improved responsivity compared to earlier work on silicon-on-insulator (SOI). The bolometer offers 24.62% change in resistance per milliwatt of input power at 3.8 µm wavelength. The thermal conductance of the bolometer is 3.86×10-5W/K, and an improvement as large as 3 orders magnitude may be possible in the future through redesign of the device geometry.

9.
Opt Lett ; 46(21): 5300-5303, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724460

RESUMO

Beam splitters are core components of photonic integrated circuits and are often implemented with multimode interference couplers. While these devices offer high performance, their operational bandwidth is still restrictive for sensing applications in the mid-infrared wavelength range. Here we experimentally demonstrate a subwavelength-structured 2×2 multimode interference coupler with high performance in the 3.1-3.7µm range, doubling the bandwidth of a conventional device.

10.
Anal Chem ; 92(16): 10891-10901, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32658466

RESUMO

Miniaturized spectrometers offering low cost, low reagent consumption, high throughput, sensitivity and automation are the future of sensing and have significant applications in environmental monitoring, food safety, biotechnology, pharmaceuticals, and healthcare. Midinfrared (MIR) spectroscopy employing complementary metal oxide semiconductor (CMOS) compatible thin film waveguides and microfluidics shows great promise toward highly integrated and robust detection tools and liquid handling. This perspective provides an overview of the emergence of thin film optical waveguides used for evanescent field sensing of liquid chemical and biological samples for MIR absorption spectroscopy. The state of the art of new material and waveguide systems used for spectroscopic measurements in the MIR is presented. An outlook on the advantages and future of waveguide-based MIR spectroscopy for application in clinical settings for point-of-care biochemical analysis is discussed.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Espectrofotometria Infravermelho/instrumentação , Secreções Corporais/química , Técnicas Analíticas Microfluídicas/métodos , Compostos Orgânicos/análise , Espectrofotometria Infravermelho/métodos
11.
Opt Express ; 28(25): 38206-38222, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379638

RESUMO

In this paper, we analyse the performance of a silicon nano-opto-electro-mechanical system (NOEMS) applied as an optical modulator, based on a suspended slot waveguide driven by electrostatic forces. The analysis is carried out with the help of the finite element analysis (FEA) method involving the influences from Casimir force, optical force and electrostatic force. The performance of the modulator are analysed from aspects of actuating modes, actuating voltage, modulating frequency, effective index, phase change, and energy consumption using the FEA method. Simulation results show that a suspended slot modulator has the advantages of low actuation voltage, low power consumption, as well as large effective index and phase change compared with modulators based upon other approaches. The performance of such a modulator can fill the performance gap between the carrier-based approach and micro-opto-electro-mechanical system (MOEMS) approach for modulation.

12.
Opt Express ; 27(1): 166-174, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30645364

RESUMO

We examine the electro-optic effect at wavelengths ranging from 1.31 to 2.02 µm for: (1) an Electronic Variable Optical Attenuator (EVOA); and (2) a Micro-Ring Resonator (MRR). For the EVOA, simulations were performed to ascertain the relationship between free-carrier concentration and optical attenuation, and are in agreement with our observation of an increase in attenuation with increasing wavelength. MRRs were fabricated for use around wavelengths of 2 µm to explore the sensitivity of operation to bus-to-ring coupling gap and p-n junction offset. Trends observed in the experiment are replicated by simulation, calibrated using the observations of the EVOA operation. The previously proposed efficiency increase of operation around 2 µm compared to more traditional wavelengths is demonstrated. Future development of devices for these wavelengths, supported by amplification using Thulium Doped Fiber Amplifier (TDFA) technology, is a promising route to aid in the alleviation of increasing demands on communication networks.

13.
Opt Express ; 27(11): 15735-15749, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163765

RESUMO

We present interlayer slope waveguides, designed to guide light from one level to another in a multi-layer silicon photonics platform. The waveguide is fabricated from hydrogenated amorphous silicon (a-Si:H) film, deposited using hot-wire chemical vapor deposition (HWCVD) at a temperature of 230°C. The interlayer slope waveguide is comprises of a lower level input waveguide and an upper level output waveguide, connected by a waveguide on a slope, with vertical separation to isolate other crossing waveguides. Measured loss of 0.17 dB/slope was obtained for waveguide dimensions of 600 nm waveguide width (w) and 400 nm core thickness (h) at a wavelength of 1550 nm and for transverse electric (TE) mode polarization.

14.
Nature ; 556(7701): 316-318, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29666490
15.
Nano Lett ; 18(1): 610-617, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29272140

RESUMO

Hybrid integration of nanoplasmonic devices with silicon photonic circuits holds promise for a range of applications in on-chip sensing, field-enhanced and nonlinear spectroscopy, and integrated nanophotonic switches. Here, we demonstrate a new regime of photon-plasmon coupling by combining a silicon photonic resonator with plasmonic nanoantennas. Using principles from coherent perfect absorption, we make use of standing-wave light fields to maximize the photon-plasmon interaction strength. Precise placement of the broadband antennas with respect to the narrowband photonic racetrack modes results in controlled hybridization of only a subset of these modes. By combining antennas into groups of radiating dipoles with opposite phase, far-field scattering is effectively suppressed. We achieve ultrafast tuning of photon-plasmon hybridization including reconfigurable routing of the standing-wave input between two output ports. Hybrid photonic-plasmonic resonators provide conceptually new approaches for on-chip integrated nanophotonic devices.

16.
Opt Lett ; 43(6): 1251-1254, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543264

RESUMO

We report the design and fabrication of a compact angled multimode interferometer (AMMI) on a 600 nm thick N-rich silicon nitride platform (n=1.92) optimized to match the International Telecommunication Union coarse wavelength division (de)multiplexing standard in the O telecommunication band. The demonstrated device exhibited a good spectral response with Δλ=20 nm, BW3 dB∼11 nm, IL<1.5 dB, and XT∼20 dB. Additionally, it showed a high tolerance to dimensional errors <120 pm/nm and low sensitivity to temperature variations <20 pm/°C, respectively. This device had a footprint of 0.02 mm×1.7 mm with the advantage of a simple design and a back-end-of-line compatible fabrication process that enables multilayer integration schemes due to its processing temperature <400°C.

17.
Opt Express ; 25(22): 27310-27320, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092207

RESUMO

WDM components fabricated on the silicon-on-insulator platform have transmission characteristics that are sensitive to dimensional errors and temperature variations due to the high refractive index and thermo-optic coefficient of Si, respectively. We propose the use of NH3-free SiNx layers to fabricate athermal (de)multiplexers based on angled multimode interferometers (AMMI) in order to achieve good spectral responses with high tolerance to dimensional errors. With this approach we have shown that stoichiometric and N-rich SiNx layers can be used to fabricate AMMIs with cross-talk <30dB, insertion loss <2.5dB, sensitivity to dimensional errors <120pm/nm, and wavelength shift <10pm/°C.

18.
Opt Express ; 25(22): 27431-27441, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092216

RESUMO

We report transmission measurements of germanium on silicon waveguides in the 7.5-8.5 µm wavelength range, with a minimum propagation loss of 2.5 dB/cm at 7.575 µm. However, we find an unexpected strongly increasing loss at higher wavelengths, potential causes of which we discuss in detail. We also demonstrate the first germanium on silicon multimode interferometers operating in this range, as well as grating couplers optimized for measurement using a long wavelength infrared camera. Finally, we use an implementation of the "cut-back" method for loss measurements that allows simultaneous transmission measurement through multiple waveguides of different lengths, and we use dicing in the ductile regime for fast and reproducible high quality optical waveguide end-facet preparation.

19.
Opt Express ; 25(10): 10893-10900, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788777

RESUMO

Based on restricted interferences mechanism in a 1x2 MMI beam splitter, we theoretically investigate and experimentally demonstrate an ultra-compact MMI-based demultiplexer for the NIR/MIR wavelengths of 1.55 µm and 2 µm. The device is fabricated on 340 nm SOI platform, with a footprint of 293x6 µm2. It exhibits extremely low insertion losses of 0.14 dB and 1.2 dB at the wavelengths of 1.55 µm and 2 µm, respectively, with contrasts of approximately 20 dB for both wavelengths, and a cross-talk of 18.83 dB.

20.
Appl Opt ; 56(31): 8769-8776, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091691

RESUMO

We present ring resonator (RR)-coupled Mach-Zehnder interferometers (MZIs) based on silicon-on-insulator rib waveguides, operating around the mid-IR wavelength of 3.8 µm. A number of different photonic integrated devices have been designed and fabricated experimentally to obtain the asymmetric Fano resonances in the mid-IR. We have investigated the influence of the coupling efficiency between the RR and the MZI as well as the phase shift between the two arms of the MZI on the Fano-type resonance spectral features, in agreement with theoretical predictions. Finally, wavelength-dependent Fano transmittances have been successfully measured with insertion losses up to ∼1 dB and extinction ratios of ∼20 dB. A slope of sharp Fano resonances as high as -574.6/µm has been achieved and estimated to be 35.5% higher than the slope of single RR Lorentzian-type resonances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA