Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 46(16): 8299-8310, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29986092

RESUMO

Mammalian DNA replication is a highly organized and regulated process. Large, Mb-sized regions are replicated at defined times along S-phase. Replication Timing (RT) is thought to play a role in shaping the mammalian genome by affecting mutation rates. Previous analyses relied on somatic RT profiles. However, only germline mutations are passed on to offspring and affect genomic composition. Therefore, germ cell RT information is necessary to evaluate the influences of RT on the mammalian genome. We adapted the RT mapping technique for limited amounts of cells, and measured RT from two stages in the mouse germline - primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). RT in germline cells exhibited stronger correlations to both mutation rate and recombination hotspots density than those of RT in somatic tissues, emphasizing the importance of using correct tissues-of-origin for RT profiling. Germline RT maps exhibited stronger correlations to additional genetic features including GC-content, transposable elements (SINEs and LINEs), and gene density. GC content stratification and multiple regression analysis revealed independent contributions of RT to SINE, gene, mutation, and recombination hotspot densities. Together, our results establish a central role for RT in shaping multiple levels of mammalian genome composition.


Assuntos
Período de Replicação do DNA/genética , Replicação do DNA/genética , Genoma/genética , Células Germinativas/metabolismo , Células-Tronco/metabolismo , Animais , Composição de Bases/genética , Linhagem Celular Tumoral , Células Cultivadas , Elementos de DNA Transponíveis/genética , Feminino , Células Germinativas/citologia , Mutação em Linhagem Germinativa , Masculino , Mamíferos/genética , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Elementos Nucleotídeos Curtos e Dispersos/genética , Células-Tronco/citologia
2.
Nature ; 490(7421): 561-5, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23023124

RESUMO

Although most genes are expressed biallelically, a number of key genomic sites--including immune and olfactory receptor regions--are controlled monoallelically in a stochastic manner, with some cells expressing the maternal allele and others the paternal allele in the target tissue. Very little is known about how this phenomenon is regulated and programmed during development. Here, using mouse immunoglobulin-κ (Igκ) as a model system, we demonstrate that although individual haematopoietic stem cells are characterized by allelic plasticity, early lymphoid lineage cells become committed to the choice of a single allele, and this decision is then stably maintained in a clonal manner that predetermines monoallelic rearrangement in B cells. This is accompanied at the molecular level by underlying allelic changes in asynchronous replication timing patterns at the κ locus. These experiments may serve to define a new concept of stem cell plasticity.


Assuntos
Alelos , Linhagem da Célula , Rearranjo Gênico de Cadeia Leve de Linfócito B/genética , Cadeias kappa de Imunoglobulina/genética , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Animais , Imunoprecipitação da Cromatina , Células Clonais/citologia , Células Clonais/imunologia , Células Clonais/metabolismo , Período de Replicação do DNA , Feminino , Hematopoese , Humanos , Cadeias kappa de Imunoglobulina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Modelos Imunológicos , Células Precursoras de Linfócitos B/imunologia , Processos Estocásticos
3.
Nat Commun ; 12(1): 1035, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589603

RESUMO

Stochastic asynchronous replication timing (AS-RT) is a phenomenon in which the time of replication of each allele is different, and the identity of the early allele varies between cells. By taking advantage of stable clonal pre-B cell populations derived from C57BL6/Castaneous mice, we have mapped the genome-wide AS-RT loci, independently of genetic differences. These regions are characterized by differential chromatin accessibility, mono-allelic expression and include new gene families involved in specifying cell identity. By combining population level mapping with single cell FISH, our data reveal the existence of a novel regulatory program that coordinates a fixed relationship between AS-RT regions on any given chromosome, with some loci set to replicate in a parallel and others set in the anti-parallel orientation. Our results show that AS-RT is a highly regulated epigenetic mark established during early embryogenesis that may be used for facilitating the programming of mono-allelic choice throughout development.


Assuntos
Células da Medula Óssea/metabolismo , Cromatina/química , Período de Replicação do DNA , Epigênese Genética , Genoma , Células Precursoras de Linfócitos B/metabolismo , Alelos , Animais , Células da Medula Óssea/citologia , Cromatina/metabolismo , Cromatina/ultraestrutura , Células Clonais , Cruzamentos Genéticos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Loci Gênicos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Precursoras de Linfócitos B/citologia
4.
Cell Stem Cell ; 23(3): 412-425.e10, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122475

RESUMO

Mbd3, a member of nucleosome remodeling and deacetylase (NuRD) co-repressor complex, was previously identified as an inhibitor for deterministic induced pluripotent stem cell (iPSC) reprogramming, where up to 100% of donor cells successfully complete the process. NuRD can assume multiple mutually exclusive conformations, and it remains unclear whether this deterministic phenotype can be attributed to a specific Mbd3/NuRD subcomplex. Moreover, since complete ablation of Mbd3 blocks somatic cell proliferation, we aimed to explore functionally relevant alternative ways to neutralize Mbd3-dependent NuRD activity. We identify Gatad2a, a NuRD-specific subunit, whose complete deletion specifically disrupts Mbd3/NuRD repressive activity on the pluripotency circuitry during iPSC differentiation and reprogramming without ablating somatic cell proliferation. Inhibition of Gatad2a facilitates deterministic murine iPSC reprogramming within 8 days. We validate a distinct molecular axis, Gatad2a-Chd4-Mbd3, within Mbd3/NuRD as being critical for blocking reestablishment of naive pluripotency and further highlight signaling-dependent and post-translational modifications of Mbd3/NuRD that influence its interactions and assembly.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição GATA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Feminino , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos
5.
Nat Struct Mol Biol ; 24(12): 1132-1138, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29131141

RESUMO

Many regions of the genome replicate asynchronously and are expressed monoallelically. It is thought that asynchronous replication may be involved in choosing one allele over the other, but little is known about how these patterns are established during development. We show that, unlike somatic cells, which replicate in a clonal manner, embryonic and adult stem cells are programmed to undergo switching, such that daughter cells with an early-replicating paternal allele are derived from mother cells that have a late-replicating paternal allele. Furthermore, using ground-state embryonic stem (ES) cells, we demonstrate that in the initial transition to asynchronous replication, it is always the paternal allele that is chosen to replicate early, suggesting that primary allelic choice is directed by preset gametic DNA markers. Taken together, these studies help define a basic general strategy for establishing allelic discrimination and generating allelic diversity throughout the organism.


Assuntos
Células-Tronco Adultas/citologia , Proliferação de Células/genética , Replicação do DNA/genética , Células-Tronco Embrionárias/citologia , Impressão Genômica/genética , Alelos , Animais , Linhagem Celular , Metilação de DNA/genética , Marcadores Genéticos/genética , Camundongos
6.
G3 (Bethesda) ; 3(4): 633-644, 2013 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-23550131

RESUMO

Trans-lesion DNA polymerases (TLSPs) enable bypass of DNA lesions during replication and are also induced under stress conditions. Being only weakly dependent on their template during replication, TLSPs introduce mutations into DNA. The low processivity of these enzymes ensures that they fall off their template after a few bases are synthesized and are then replaced by the more accurate replicative polymerase. We find that the three TLSPs of budding yeast Saccharomyces cerevisiae Rev1, PolZeta (Rev3 and Rev7), and Rad30 are induced during meiosis at a time when DNA double-strand breaks (DSBs) are formed and homologous chromosomes recombine. Strains deleted for one or any combination of the three TLSPs undergo normal meiosis. However, in the triple-deletion mutant, there is a reduction in both allelic and ectopic recombination. We suggest that trans-lesion polymerases are involved in the processing of meiotic double-strand breaks that lead to mutations. In support of this notion, we report significant yeast two-hybrid (Y2H) associations in meiosis-arrested cells between the TLSPs and DSB proteins Rev1-Spo11, Rev1-Mei4, and Rev7-Rec114, as well as between Rev1 and Rad30 We suggest that the involvement of TLSPs in processing of meiotic DSBs could be responsible for the considerably higher frequency of mutations reported during meiosis compared with that found in mitotically dividing cells, and therefore may contribute to faster evolutionary divergence than previously assumed.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA/genética , Meiose/genética , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutação , Mapas de Interação de Proteínas , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA