RESUMO
Richter syndrome represents the transformation of the chronic lymphocytic leukemia (CLL) into an aggressive lymphoma, most frequently the diffuse large B-cell lymphoma (DLBCL). In this report we describe a patient with CLL, who developed a clonally-related pleomorphic highly-aggressive mantle cell lymphoma (MCL) after five cycles of a fludarabine-based second-line therapy for the first relapse of CLL. Molecular cytogenetic methods together with whole-exome sequencing revealed numerous gene alterations restricted to the MCL clone (apart from the canonical t(11;14)(q13;q32) translocation) including gain of one copy of ATM gene or emergence of TP53, CREBBP, NUP214, FUBP1 and SF3B1 gene mutations. Similarly, gene expression analysis revealed vast differences between the MCL and CLL transcriptome, including overexpression of cyclin D1, downregulation of cyclins D2 and D3, or downregulation of IL4R in the MCL clone. Backtracking analysis using quantitative PCR specifically detecting an MCL-restricted focal deletion of TP53 revealed that the pre-MCL clone appeared in the bone marrow and peripheral blood of the patient approximately 4 years before the clinical manifestation of MCL. Both molecular cytogenetic and sequencing data support the hypothesis of a slow development of the pre-MCL clone in parallel to CLL over several years, and thereby exclude the possibility that the transformation event occurred at the stage of the CLL relapse clone by mere t(11;14)(q13;q32) acquisition.
Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 14 , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Leucemia Linfocítica Crônica de Células B/metabolismo , Perda de Heterozigosidade , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Linfoma de Célula do Manto/metabolismo , Pessoa de Meia-Idade , Translocação Genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Mantle cell lymphoma (MCL) is an aggressive type of B-cell non-Hodgkin lymphoma (NHL) associated with poor prognosis. Animal models of MCL are scarce. We established and characterized various in vivo models of metastatic human MCL by tail vein injection of either primary cells isolated from patients with MCL or established MCL cell lines (Jeko-1, Mino, Rec-1, Hbl-2, and Granta-519) into immunodeficient NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice. MCL infiltration was assessed with immunohistochemistry (tissues) and flow cytometry (peripheral blood). Engraftment of primary MCL cells was observed in 7 out of 12 patient samples. The pattern of engraftment of primary MCL cells varied from isolated involvement of the spleen to multiorgan infiltration. On the other hand, tumor engraftment was achieved in all five MCL cell lines used and lymphoma involvement of murine bone marrow, spleen, liver, and brain was observed. Overall survival of xenografted mice ranged from 22 ± 1 to 54 ± 3 days depending on the cell line used. Subsequently, we compared the gene expression profile (GEP) and phenotype of the engrafted MCL cells compared with the original in vitro growing cell lines (controls). We demonstrated that engrafted MCL cells displayed complex changes of GEP, protein expression, and sensitivity to cytotoxic agents when compared with controls. We further demonstrated that our MCL mouse models could be used to test the therapeutic activity of systemic chemotherapy, monoclonal antibodies, or angiogenesis inhibitors. The characterization of MCL murine models is likely to aid in improving our knowledge in the disease biology and to assist scientists in the preclinical and clinical development of novel agents in relapsed/refractory MCL patients.
Assuntos
Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Linfoma de Célula do Manto/genética , Transcriptoma/genética , Idoso , Animais , Medula Óssea/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Estimativa de Kaplan-Meier , Fígado/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Baço/metabolismo , Transplante Heterólogo , Células Tumorais CultivadasRESUMO
BACKGROUND: Mantle cell lymphoma (MCL) is an aggressive type of B-cell non-Hodgkin lymphoma associated with poor prognosis. Implementation of high-dose cytarabine (araC) into induction therapy became standard-of-care for all newly diagnosed younger MCL patients. However, many patients relapse even after araC-based regimen. Molecular mechanisms responsible for araC resistance in MCL are unknown and optimal treatment strategy for relapsed/refractory MCL patients remains elusive. METHODS: Five araC-resistant (R) clones were derived by long-term culture of five MCL cell lines (CTRL) with increasing doses of araC up to 50 microM. Illumina BeadChip and 2-DE proteomic analysis were used to identify gene and protein expression changes associated with araC resistance in MCL. In vitro cytotoxicity assays and experimental therapy of MCL xenografts in immunodeficient mice were used to analyze their relative responsiveness to a set of clinically used anti-MCL drugs. Primary MCL samples were obtained from patients at diagnosis and after failure of araC-based therapies. RESULTS: Marked downregulation of deoxycytidine-kinase (DCK) mRNA and protein expression was identified as the single most important molecular event associated with araC-resistance in all tested MCL cell lines and in 50% primary MCL samples. All R clones were highly (20-1000x) cross-resistant to all tested nucleoside analogs including gemcitabine, fludarabine and cladribine. In vitro sensitivity of R clones to other classes of clinically used anti-MCL agents including genotoxic drugs (cisplatin, doxorubicin, bendamustine) and targeted agents (bortezomib, temsirolimus, rituximab) remained unaffected, or was even increased (ibrutinib). Experimental therapy of immunodeficient mice confirmed the anticipated loss of anti-tumor activity (as determined by overall survival) of the nucleoside analogs gemcitabine and fludarabine in mice transplanted with R clone compared to mice transplanted with CTRL cells, while the anti-tumor activity of cisplatin, temsirolimus, bortezomib, bendamustine, cyclophosphamide and rituximab remained comparable between the two cohorts. CONCLUSIONS: Acquired resistance of MCL cells to araC is associated with downregulation of DCK, enzyme of the nucleotide salvage pathway responsible for the first phosphorylation (=activation) of most nucleoside analogs used in anti-cancer therapy. The data suggest that nucleoside analogs should not be used in the therapy of MCL patients, who relapse after failure of araC-based therapies.
Assuntos
Cladribina/farmacologia , Citarabina/farmacologia , Desoxicitidina Quinase/metabolismo , Desoxicitidina/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma de Célula do Manto/enzimologia , Vidarabina/análogos & derivados , Animais , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Monoclonais Murinos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Células Clonais , Desoxicitidina/farmacologia , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Espectrometria de Massas , Camundongos , Proteômica , Rituximab , Vidarabina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaAssuntos
Células da Medula Óssea/patologia , Hematopoese/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Folicular/patologia , Linfoma Difuso de Grandes Células B/patologia , Linfoma de Célula do Manto/patologia , Mieloma Múltiplo/patologia , Fatores Etários , Idoso , Linfócitos B/imunologia , Linfócitos B/patologia , Células da Medula Óssea/imunologia , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Hematopoese/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Linfoma Folicular/genética , Linfoma Folicular/imunologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/imunologia , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologiaAssuntos
Células da Medula Óssea/patologia , Leucemia Linfocítica Crônica de Células B/etnologia , Leucemia Linfocítica Crônica de Células B/patologia , Células Precursoras de Linfócitos B/patologia , Povo Asiático , Células da Medula Óssea/imunologia , Estudos de Casos e Controles , Diferenciação Celular , Humanos , Imunofenotipagem , Leucemia Linfocítica Crônica de Células B/imunologia , Contagem de Linfócitos , Células Precursoras de Linfócitos B/imunologia , População BrancaRESUMO
PURPOSE: To investigate the roles of BCL2, MCL1, and BCL-XL in the survival of diffuse large B-cell lymphoma (DLBCL). EXPERIMENTAL DESIGNS: Immunohistochemical analysis of 105 primary DLBCL samples, and Western blot analysis of 18 DLBCL cell lines for the expression of BCL2, MCL1, and BCL-XL. Pharmacologic targeting of BCL2, MCL1, and BCL-XL with ABT-199, homoharringtonine (HHT), and ABT-737. Analysis of DLBCL clones with manipulated expressions of BCL2, MCL1, and BCL-XL. Immunoprecipitation of MCL1 complexes in selected DLBCL cell lines. Experimental therapy aimed at inhibition of BCL2 and MCL1 using ABT-199 and HHT, single agent, or in combination, in vitro and in vivo on primary cell-based murine xenograft models of DLBCL. RESULTS: By the pharmacologic targeting of BCL2, MCL1, and BCL-XL, we demonstrated that DLBCL can be divided into BCL2-dependent and MCL1-dependent subgroups with a less pronounced role left for BCL-XL. Derived DLBCL clones with manipulated expressions of BCL2, MCL1, and BCL-XL, as well as the immunoprecipitation experiments, which analyzed MCL1 protein complexes, confirmed these findings at the molecular level. We demonstrated that concurrent inhibition of BCL2 and MCL1 with ABT-199 and HHT induced significant synthetic lethality in most BCL2-expressing DLBCL cell lines. The marked cytotoxic synergy between ABT-199 and HHT was also confirmed in vivo using primary cell-based murine xenograft models of DLBCL. CONCLUSIONS: As homoharringtonine is a clinically approved antileukemia drug, and ABT-199 is in advanced phases of diverse clinical trials, our data might have direct implications for novel concepts of early clinical trials in patients with aggressive DLBCL.
Assuntos
Linfoma Difuso de Grandes Células B/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteína bcl-X/biossíntese , Animais , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Harringtoninas/administração & dosagem , Mepesuccinato de Omacetaxina , Humanos , Linfoma Difuso de Grandes Células B/classificação , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Nitrofenóis/administração & dosagem , Piperazinas/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Mantle cell lymphoma (MCL) is a chronically relapsing aggressive type of B-cell non-Hodgkin lymphoma considered incurable by currently used treatment approaches. Fludarabine is a purine analog clinically still widely used in the therapy of relapsed MCL. Molecular mechanisms of fludarabine resistance have not, however, been studied in the setting of MCL so far. We therefore derived fludarabine-resistant MCL cells (Mino/FR) and performed their detailed functional and proteomic characterization compared to the original fludarabine sensitive cells (Mino). We demonstrated that Mino/FR were highly cross-resistant to other antinucleosides (cytarabine, cladribine, gemcitabine) and to an inhibitor of Bruton tyrosine kinase (BTK) ibrutinib. Sensitivity to other types of anti-lymphoma agents was altered only mildly (methotrexate, doxorubicin, bortezomib) or remained unaffacted (cisplatin, bendamustine). The detailed proteomic analysis of Mino/FR compared to Mino cells unveiled over 300 differentially expressed proteins. Mino/FR were characterized by the marked downregulation of deoxycytidine kinase (dCK) and BTK (thus explaining the observed crossresistance to antinucleosides and ibrutinib), but also by the upregulation of several enzymes of de novo nucleotide synthesis, as well as the up-regulation of the numerous proteins of DNA repair and replication. The significant upregulation of the key antiapoptotic protein Bcl-2 in Mino/FR cells was associated with the markedly increased sensitivity of the fludarabine-resistant MCL cells to Bcl-2-specific inhibitor ABT199 compared to fludarabine-sensitive cells. Our data thus demonstrate that a detailed molecular analysis of drug-resistant tumor cells can indeed open a way to personalized therapy of resistant malignancies.
Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linfoma de Célula do Manto/metabolismo , Proteômica/métodos , Vidarabina/análogos & derivados , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo/métodos , Linfoma de Célula do Manto/tratamento farmacológico , Masculino , Espectrometria de Massas em Tandem/métodos , Células Tumorais Cultivadas , Vidarabina/farmacologiaRESUMO
A complete series of pyrrolidine nucleotides, (3R)- and (3S)-3-(guanin-9-yl)pyrrolidin-1-N-ylcarbonylphosphonic acids and (3S,4R)-, (3R,4S)-, (3S,4S)-, and (3R,4R)-4-(guanin-9-yl)-3-hydroxypyrrolidin-1-N-ylcarbonylphosphonic acids, were synthesized and evaluated as potential inhibitors of purine nucleoside phosphorylase (PNP) isolated from peripheral blood mononuclear cells (PBMCs) and cell lines of myeloid and lymphoid origin. Two compounds, (S)-3-(guanin-9-yl)pyrrolidin-1-N-ylcarbonylphosphonic acid (2a) and (3S,4R)-4-(guanin-9-yl)-3-hydroxypyrrolidin-1-N-ylcarbonylphosphonic acid (6a), were recognized as nanomolar competitive inhibitors of PNP isolated from cell lines with K(i) values within the ranges of 16-100 and 10-24 nM, respectively. The low (MESG)K(i) and (Pi)K(i) values of both compounds for PNP isolated from PBMCs suggest that these compounds could be bisubstrate inhibitors that occupy both the phosphate and nucleoside binding sites of the enzyme.