Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 64(14): 4479-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006420

RESUMO

Transcription factors are proposed as suitable targets for the control of traits such as yield or food quality in plants. This study reports the results of a functional genomics research effort that identified ATHB17, a transcription factor from the homeodomain-leucine zipper class II family, as a novel target for the enhancement of photosynthetic capacity. It was shown that ATHB17 is expressed natively in the root quiescent centre (QC) from Arabidopsis embryos and seedlings. Analysis of the functional composition of genes differentially expressed in the QC from a knockout mutant (athb17-1) compared with its wild-type sibling revealed the over-representation of genes involved in auxin stimulus, embryo development, axis polarity specification, and plastid-related processes. While no other phenotypes were observed in athb17-1 plants, overexpression of ATHB17 produced a number of phenotypes in Arabidopsis including enhanced chlorophyll content. Image analysis of isolated mesophyll cells of 35S::ATHB17 lines revealed an increase in the number of chloroplasts per unit cell size, which is probably due to an increase in the number of proplastids per meristematic cell. Leaf physiological measurements provided evidence of improved photosynthetic capacity in 35S::ATHB17 lines on a per unit leaf area basis. Estimates of the capacity for ribulose-1,5-bisphosphate-saturated and -limited photosynthesis were significantly higher in 35S::ATHB17 lines.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina , Fotossíntese , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cloroplastos/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Proteínas de Homeodomínio/genética , Hibridização In Situ , Luz , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Células do Mesofilo/efeitos da radiação , Mutação/genética , Fenótipo , Fotoperíodo , Fotossíntese/efeitos da radiação , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
2.
Plant Physiol ; 156(4): 2109-23, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21632973

RESUMO

A B-box zinc finger protein, B-BOX32 (BBX32), was identified as playing a role in determining hypocotyl length during a large-scale functional genomics study in Arabidopsis (Arabidopsis thaliana). Further analysis revealed that seedlings overexpressing BBX32 display elongated hypocotyls in red, far-red, and blue light, along with reduced cotyledon expansion in red light. Through comparative analysis of mutant and overexpression line phenotypes, including global expression profiling and growth curve studies, we demonstrate that BBX32 acts antagonistically to ELONGATED HYPOCOTYL5 (HY5). We further show that BBX32 interacts with SALT TOLERANCE HOMOLOG2/BBX21, another B-box protein previously shown to interact with HY5. Based on these data, we propose that BBX32 functions downstream of multiple photoreceptors as a modulator of light responses. As such, BBX32 potentially has a native role in mediating gene repression to maintain dark adaptation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Transdução de Sinal Luminoso/efeitos da radiação , Luz , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Escuridão , Perfilação da Expressão Gênica , Genes de Plantas/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Transdução de Sinal Luminoso/genética , Modelos Biológicos , Ligação Proteica/efeitos da radiação
3.
J Theor Biol ; 270(1): 31-41, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21093457

RESUMO

The E3 ubiquitin ligase COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1) plays a key role in the repression of the plant photomorphogenic development in darkness. In the presence of light, COP1 is inactivated by a mechanism which is not completely understood. This leads to accumulation of COP1's target transcription factors, which initiates photomorphogenesis, resulting in dramatic changes of the seedling's physiology. Here we use a mathematical model to explore the possible mechanism of COP1 modulation upon dark/light transition in Arabidopsis thaliana based upon data for two COP1 target proteins: HY5 and HFR1, which play critical roles in photomorphogenesis. The main reactions in our model are the inactivation of COP1 by a proposed photoreceptor-related inhibitor I and interactions between COP1 and a CUL4 (CULLIN4)-based ligase. For building and verification of the model, we used the available published and our new data on the kinetics of HY5 and HFR1 together with the data on COP1 abundance. HY5 has been shown to accumulate at a slower rate than HFR1. To describe the observed differences in the timecourses of the "slow" target HY5 and the "fast" target HFR1, we hypothesize a switch between the activities of COP1 and CUL4 ligases upon dark/light transition, with COP1 being active mostly in darkness and CUL4 in light. The model predicts a bi-phasic kinetics of COP1 activity upon the exposure of plants to light, with its restoration after the initial decline and the following slow depletion of the total COP1 content. CUL4 activity is predicted to increase in the presence of light. We propose that the ubiquitin ligase switch is important for the complex regulation of multiple transcription factors during plants development. In addition, this provides a new mechanism for sensing the duration of light period, which is important for seasonal changes in plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Modelos Biológicos , Morfogênese/efeitos da radiação , Fotoperíodo , Ubiquitina-Proteína Ligases/metabolismo , Algoritmos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Simulação por Computador , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos da radiação , Regulação da Expressão Gênica de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Cinética , Morfogênese/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Regulação para Cima/efeitos da radiação
5.
Proc Natl Acad Sci U S A ; 104(42): 16450-5, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17923671

RESUMO

Commercially improved crop performance under drought conditions has been challenging because of the complexity of the trait and the multitude of factors that influence yield. Here we report the results of a functional genomics approach that identified a transcription factor from the nuclear factor Y (NF-Y) family, AtNF-YB1, which acts through a previously undescribed mechanism to confer improved performance in Arabidopsis under drought conditions. An orthologous maize transcription factor, ZmNF-YB2, is shown to have an equivalent activity. Under water-limited conditions, transgenic maize plants with increased ZmNF-YB2 expression show tolerance to drought based on the responses of a number of stress-related parameters, including chlorophyll content, stomatal conductance, leaf temperature, reduced wilting, and maintenance of photosynthesis. These stress adaptations contribute to a grain yield advantage to maize under water-limited environments. The application of this technology has the potential to significantly impact maize production systems that experience drought.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Fator de Ligação a CCAAT/fisiologia , Desastres , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/fisiologia , Água , Zea mays/genética , Proteínas de Arabidopsis/genética , Fator de Ligação a CCAAT/genética , Genômica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Fatores de Transcrição/genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA