Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752106

RESUMO

Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce ß-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum ß-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated ß-mannanase activity was 805.12 U/mL, which was close to the predicted ß-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of ß-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of ß-mannanase activity by Bacillus subtilis ATCC11774.


Assuntos
Bacillus subtilis/metabolismo , Meios de Cultura/química , beta-Manosidase/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Concentração de Íons de Hidrogênio , Sulfato de Magnésio/química , Cloreto de Sódio/química , Temperatura
2.
Nutrients ; 10(8)2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30126103

RESUMO

Chemically-interesterified (CIE) fats are trans-fat free and are increasingly being used as an alternative to hydrogenated oils for food manufacturing industries to optimize their products' characteristics and nutrient compositions. The metabolic effects of CIE fats on insulin activity, lipids, and adiposity in humans are not well established. We investigated the effects of CIE fats rich in palmitic (C16:0, IEPalm) and stearic (C18:0, IEStear) acids on insulin resistance, serum lipids, apolipoprotein concentrations, and adiposity, using C16:0-rich natural palm olein (NatPO) as the control. We designed a parallel, double-blind clinical trial. Three test fats were used to prepare daily snacks for consumption with a standard background diet over a period of 8 weeks by three groups of a total of 85 healthy, overweight adult volunteers. We measured the outcome variables at weeks 0, 6, and at the endpoint of 8. After 8 weeks, there was no significant difference in surrogate biomarkers of insulin resistance in any of the IE fat diets (IEPalm and IEStear) compared to the NatPO diet. The change in serum triacylglycerol concentrations was significantly lower with the IEStear diet, and the changes in serum leptin and body fat percentages were significantly lower in the NatPO-diet compared to the IEPalm diet. We conclude that diets containing C16:0 and C18:0-rich CIE fats do not affect markers of insulin resistance compared to a natural C16:0-rich fat (NatPO) diet. Higher amounts of saturated fatty acids (SFAs) and longer chain SFAs situated at the sn-1,3 position of the triacylglycerol (TAG) backbones resulted in less weight gain and lower changes in body fat percentage and leptin concentration to those observed in NatPO and IEStear.


Assuntos
Gorduras na Dieta/administração & dosagem , Resistência à Insulina , Óleo de Palmeira/administração & dosagem , Ácidos Esteáricos/administração & dosagem , Adiposidade , Adulto , Apolipoproteína A-I/sangue , Apolipoproteína B-100/sangue , Glicemia/metabolismo , Índice de Massa Corporal , Colesterol/sangue , Dieta , Método Duplo-Cego , Ácidos Graxos/análise , Feminino , Humanos , Insulina/sangue , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Sobrepeso/sangue , Cooperação do Paciente , Lanches , Triglicerídeos/sangue , Aumento de Peso , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA