Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anesthesiology ; 114(4): 940-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21386701

RESUMO

BACKGROUND: Exercise is often prescribed as a therapy for chronic pain. Short-term exercise briefly increases the production of endogenous analgesics, leading to transient antinociception. In limited studies, exercise produced sustained increases in endogenous opioids, sustained analgesia, or diminished measures of chronic pain. This study tests the hypothesis that regular aerobic exercise leads to sustained reversal of neuropathic pain by activating endogenous opioid-mediated pain modulatory systems. METHODS: After baseline measurements, the L5 and L6 spinal nerves of male Sprague-Dawley rats were tightly ligated. Animals were randomized to sedentary or 5-week treadmill exercise-trained groups. Thermal and tactile sensitivities were assessed 23 h after exercise, using paw withdrawal thresholds to von Frey filaments and withdrawal latencies to noxious heat. Opioid receptor antagonists were administered by subcutaneous, intrathecal, or intracerebroventricular injection. Opioid peptides were quantified using immunohistochemistry with densitometry. RESULTS: Exercise training ameliorated thermal and tactile hypersensitivity in spinal nerve-ligated animals within 3 weeks. Sensory hypersensitivity returned 5 days after discontinuation of exercise training. The effects of exercise were reversed by using systemically or intracerebroventricularly administered opioid receptor antagonists and prevented by continuous infusion of naltrexone. Exercise increased ß-endorphin and met-enkephalin content in the rostral ventromedial medulla and the mid-brain periaqueductal gray area. CONCLUSIONS: Regular moderate aerobic exercise reversed signs of neuropathic pain and increased endogenous opioid content in brainstem regions important in pain modulation. Exercise effects were reversed by opioid receptor antagonists. These results suggest that exercise-induced reversal of neuropathic pain results from an up-regulation of endogenous opioids.


Assuntos
Neuralgia/fisiopatologia , Limiar da Dor/fisiologia , Condicionamento Físico Animal/fisiologia , Receptores Opioides/fisiologia , Animais , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Encefalina Metionina/metabolismo , Masculino , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neuralgia/reabilitação , Limiar da Dor/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores Opioides/efeitos dos fármacos , beta-Endorfina/metabolismo
2.
Eur J Neurosci ; 29(4): 727-37, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19200067

RESUMO

The clinically important opioid fentanyl, administered acutely, enhances mechanical hypersensitivity in a model of surgical pain induced by plantar incision. Activity of neurokinin-1 (NK-1) receptor-expressing ascending spinal neurons, descending pathways originating in the rostral ventromedial medulla (RVM), and spinal dynorphin are necessary for the development and maintenance of hyperalgesia during sustained morphine exposure, suggesting that these mechanisms may also be important in opioid enhancement of surgical pain. Therefore, we examined the roles of these mechanisms in sensory hypersensitivity produced by acute fentanyl administration in rats not undergoing surgical incision and in rats undergoing plantar incision. In non-operated rats, fentanyl induced analgesia followed by immediate and long-lasting sensory hypersensitivity, as previously described. Fentanyl also enhanced pain sensitivity induced by plantar incision. Ablation of NK-1-expressing spinal neurons by pre-treatment with substance P-Saporin reduced sensory hypersensitivity in fentanyl-treated rats and, to a lesser extent, in fentanyl-treated rats with a surgical incision. Microinjection of lidocaine into the RVM completely reversed fentanyl-induced sensory hypersensitivity and fentanyl enhancement of incision-induced sensory hypersensitivity. RVM lidocaine injection resulted in a slight reduction of incision-induced sensory hypersensitivity in the absence of fentanyl pre-treatment. Spinal dynorphin content increased by 30 +/- 7% and 66 +/- 17% in fentanyl- and fentanyl/incision-treated rats. Spinal administration of antiserum to dynorphin attenuated sensory hypersensitivity in fentanyl-treated rats. These data support a partial role of NK-1 receptor-containing ascending pathways and a crucial role of descending facilitatory pathways in fentanyl-induced hyperalgesia and in the enhanced hyperalgesia produced by fentanyl treatment following surgical incision.


Assuntos
Bulbo/fisiopatologia , Neurônios/metabolismo , Dor Pós-Operatória/fisiopatologia , Receptores da Neurocinina-1/metabolismo , Medula Espinal/fisiopatologia , Analgésicos Opioides/farmacologia , Anestésicos Locais/farmacologia , Animais , Modelos Animais de Doenças , Dinorfinas/metabolismo , Fentanila/farmacologia , Imuno-Histoquímica , Lidocaína/farmacologia , Masculino , Vias Neurais/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Dor Pós-Operatória/induzido quimicamente , Dor Pós-Operatória/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
3.
Pain ; 93(3): 239-245, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11514083

RESUMO

Cannabinoid receptor agonists diminish responses to painful stimuli. Extensive evidence implicates the CB(1) receptor in the production of antinociception. However, the capacity of CB(2) receptors, which are located outside the central nervous system (CNS), to produce antinociception is not known. Using AM1241, a CB(2) receptor-selective agonist, we demonstrate that CB(2) receptors produce antinociception to thermal stimuli. Injection of AM1241 in the hindpaw produced antinociception to a stimulus applied to the same paw. Injection of an equivalent dose of AM1241 into the paw contralateral to the side of testing did not. The antinociceptive actions of AM1241 were blocked by the CB(2) receptor-selective antagonist AM630, but not by the CB(1) receptor-selective antagonist AM251. AM1241 also produced antinociception when injected systemically (intraperitoneally). The antinociceptive actions of systemic AM1241 were blocked by injection of AM630 into the paw where the thermal stimulus was applied, but not the contralateral paw. These findings demonstrate the local, peripheral nature of CB(2) cannabinoid antinociception. AM1241 did not produce the CNS cannabinoid effects of hypothermia, catalepsy, inhibition of activity or impaired ambulation, while this tetrad of effects was produced by the mixed CB(1)/CB(2) receptor agonist WIN55,212-2. Peripheral antinociception without CNS effects is consistent with the peripheral distribution of CB(2) receptors. CB(2) receptor agonists may have promise clinically for the treatment of pain without CNS cannabinoid side effects.


Assuntos
Analgésicos/farmacologia , Canabinoides/metabolismo , Medição da Dor/efeitos dos fármacos , Sistema Nervoso Periférico/efeitos dos fármacos , Receptor CB2 de Canabinoide , Receptores de Droga/agonistas , Animais , Benzoxazinas , Indóis/farmacologia , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Sistema Nervoso Periférico/fisiologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides , Receptores de Droga/fisiologia
4.
Pain ; 122(1-2): 36-42, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16563625

RESUMO

Management of acute pain remains a significant clinical problem. In preclinical studies, CB2 cannabinoid receptor-selective agonists inhibit nociception without producing central nervous system side effects. The CB2 receptor-selective agonist AM1241 produces antinociceptive effects that are antagonized by CB2, but not CB1, receptor-selective antagonists, suggesting that activation of CB2 receptors results in antinociception. However, it has not been possible to definitively demonstrate that these effects are mediated by CB2 receptors, because we have lacked the pharmacological tools to confirm the in vivo receptor selectivity of the antagonists used. Further, recent evidence for cannabinoid-like receptors beyond CB1 and CB2 raises the possibility that AM1241 exerts its antinociceptive effects at uncharacterized CB2-like receptors that are also inhibited by AM630. The experiments reported here further test the hypothesis that CB2 receptor activation inhibits nociception. They evaluated the antinociceptive actions of AM1241 and the less-selective CB2 receptor agonist WIN55,212-2 in wild-type (CB2+/+) mice and in mice with genetic disruption of the CB2 receptor (CB2-/- mice). AM1241 inhibited thermal nociception in CB2+/+ mice, but had no effect in CB2-/- littermates. WIN55,212-2 produced equivalent antinociception in CB1+/+ and CB1-/- mice, while its antinociceptive effects were reduced in CB2-/- compared to CB2+/+ mice. The effects of morphine were not altered in CB2-/- compared to CB2+/+ mice. These data strongly suggest that AM1241 produces antinociception in vivo by activating CB2 cannabinoid receptors. Further, they confirm the potential therapeutic relevance of CB2 cannabinoid receptors for the treatment of acute pain.


Assuntos
Analgésicos/administração & dosagem , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Dor/fisiopatologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Canabinoides/administração & dosagem , Camundongos
5.
Proc Natl Acad Sci U S A ; 102(8): 3093-8, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15705714

RESUMO

CB(2) cannabinoid receptor-selective agonists are promising candidates for the treatment of pain. CB(2) receptor activation inhibits acute, inflammatory, and neuropathic pain responses but does not cause central nervous system (CNS) effects, consistent with the lack of CB(2) receptors in the normal CNS. To date, there has been virtually no information regarding the mechanism of CB(2) receptor-mediated inhibition of pain responses. Here, we test the hypothesis that CB(2) receptor activation stimulates release from keratinocytes of the endogenous opioid beta-endorphin, which then acts at opioid receptors on primary afferent neurons to inhibit nociception. The antinociceptive effects of the CB(2) receptor-selective agonist AM1241 were prevented in rats when naloxone or antiserum to beta-endorphin was injected in the hindpaw where the noxious thermal stimulus was applied, suggesting that beta-endorphin is necessary for CB(2) receptor-mediated antinociception. Further, AM1241 did not inhibit nociception in mu-opioid receptor-deficient mice. Hindpaw injection of beta-endorphin was sufficient to produce antinociception. AM1241 stimulated beta-endorphin release from rat skin tissue and from cultured human keratinocytes. This stimulation was prevented by AM630, a CB(2) cannabinoid receptor-selective antagonist and was not observed in skin from CB(2) cannabinoid receptor-deficient mice. These data suggest that CB(2) receptor activation stimulates release from keratinocytes of beta-endorphin, which acts at local neuronal mu-opioid receptors to inhibit nociception. Supporting this possibility, CB(2) immunolabeling was detected on beta-endorphin-containing keratinocytes in stratum granulosum throughout the epidermis of the hindpaw. This mechanism allows for the local release of beta-endorphin, where CB(2) receptors are present, leading to anatomical specificity of opioid effects.


Assuntos
Analgésicos/farmacologia , Receptor CB2 de Canabinoide/fisiologia , beta-Endorfina/metabolismo , Animais , Canabinoides , Células Cultivadas , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/agonistas , Receptor de Endotelina B/fisiologia
6.
Anesthesiology ; 96(5): 1161-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11981157

RESUMO

BACKGROUND: This study tests the hypothesis that loss of spinal activity of gamma-aminobutyric acid (GABA) contributes to the allodynia and hyperalgesia observed after peripheral nerve injury. METHODS: Intrathecal catheters were implanted in male Sprague-Dawley rats. Antinociception was assessed by measuring withdrawal latency to immersion of the tail in a 52 degrees C water bath. Nerve injury was produced by ligation of the L5 and L6 spinal nerves. Testing was performed 4-14 days after spinal nerve ligation, when tactile allodynia and thermal hyperalgesia were established. Tactile allodynia was quantitated using the threshold to withdrawal of the hind paw on probing with von Frey filaments. Thermal hyperalgesia was quantitated using the latency to withdrawal of the hind paw from radiant heat. Motor function was tested using a rotarod apparatus. RESULTS: Spinal administration of the GABAA receptor antagonist bicuculline or the GABAB receptor antagonist phaclofen produced tactile allodynia and thermal hyperalgesia in normal rats. The GABAB receptor agonist baclofen, administered spinally, produced antinociception in the tail-flick test, whereas the GABAA receptor agonist isoguvacine did not. Isoguvacine and baclofen each reversed tactile allodynia and thermal hyperalgesia produced by spinal nerve ligation. Baclofen but not isoguvacine prolonged thermal withdrawal latency in nerve-injured rats beyond preoperative values. Baclofen but not isoguvacine impaired motor function. CONCLUSIONS: Pharmacologic inhibition of intrinsic GABA tone in normal rats resulted in tactile allodynia and thermal hyperalgesia, consistent with the hypothesis being tested. Exogenous administration of GABA agonists reversed spinal nerve ligation-induced allodynia and hyperalgesia, also consistent with this hypothesis. Isoguvacine produced specific antihyperalgesic and antiallodynic effects, whereas assessment of the effects of baclofen was complicated by motor dysfunction. Spinal GABAA agonists may provide a specific therapy for neuropathic pain.


Assuntos
Agonistas de Receptores de GABA-A , Agonistas dos Receptores de GABA-B , Dor/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Medula Espinal/efeitos dos fármacos , Animais , Agonistas GABAérgicos/farmacologia , Temperatura Alta , Hiperalgesia/fisiopatologia , Injeções Espinhais , Masculino , Atividade Motora/efeitos dos fármacos , Dor/psicologia , Medição da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/psicologia , Estimulação Física , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/fisiologia , Ácido gama-Aminobutírico/fisiologia
7.
Anesthesiology ; 99(4): 955-60, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14508331

RESUMO

BACKGROUND: Cannabinoid receptor agonists inhibit inflammatory hyperalgesia in animal models. Nonselective cannabinoid receptor agonists also produce central nervous system (CNS) side effects. Agonists selective for CB2 cannabinoid receptors, which are not found in the CNS, do not produce the CNS effects typical of nonselective cannabinoid receptor agonists but do inhibit acute nociception. The authors used the CB2 receptor-selective agonist AM1241 to test the hypothesis that selective activation of peripheral CB2 receptors inhibits inflammatory hyperalgesia. METHODS: Rats were injected in the hind paw with carrageenan or capsaicin. Paw withdrawal latencies were measured using a focused thermal stimulus. The effects of peripheral CB2 receptor activation were determined by using local injection of AM1241. CB2 receptor mediation of the actions of AM1241 was shown by using the CB2 receptor-selective antagonist AM630 and the CB1 receptor-selective antagonist AM251. RESULTS: AM1241 fully reversed carrageenan-induced inflammatory thermal hyperalgesia when injected into the inflamed paw. In contrast, AM1241 injected into the contralateral paw had no effect, showing that its effects were local. AM1241 also reversed the local edema produced by hind paw carrageenan injection. The effects of AM1241 were reversed by the CB2 receptor-selective antagonist AM630, but not by the CB1 receptor-selective antagonist AM251. AM1241 also inhibited flinching and thermal hyperalgesia produced by hind paw capsaicin injection. CONCLUSIONS: Local, peripheral CB2 receptor activation inhibits inflammation and inflammatory hyperalgesia. These results suggest that peripheral CB2 receptors may be an appropriate target for eliciting relief of inflammatory pain without the CNS effects of nonselective cannabinoid receptor agonists.


Assuntos
Hiperalgesia/metabolismo , Inflamação/metabolismo , Receptor CB2 de Canabinoide , Receptores de Droga/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Canabinoides , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides , Receptores de Droga/agonistas
8.
Anesthesiology ; 100(6): 1538-44, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15166576

RESUMO

BACKGROUND: Administration of opioid receptor agonists is followed by paradoxical sensory hypersensitivity. This hypersensitivity has been suggested to contribute to the antinociceptive tolerance observed with opioids. The authors hypothesized that alpha 2-adrenoreceptor agonists, which also produce antinociceptive tolerance, would produce sensory hypersensitivity. METHODS: alpha 2-Adrenoreceptor agonists were administered to male Sprague-Dawley rats as a single subcutaneous injection, a continuous subcutaneous infusion, a single intrathecal injection, or a continuous intrathecal infusion. Thermal sensitivity was determined using latency to withdrawal of the hind paw from radiant heat. Tactile sensitivity was determined using withdrawal threshold to von Frey filaments. Spinal dynorphin content was measured by enzyme immunoassay. RESULTS: Single systemic or intrathecal injections of clonidine or dexmedetomidine produced antinociception followed by delayed thermal and tactile hypersensitivity. Six-day systemic or intrathecal infusion of clonidine produced tactile and thermal hypersensitivity observed even during clonidine infusion. Sensory hypersensitivity was prevented by coadministration of the alpha 2-adrenoreceptor-selective antagonist idazoxan or the N-methyl-D-aspartate receptor-selective antagonist MK-801. Six-day infusion of intrathecal clonidine increased dynorphin content in dorsal lumbar spinal cord. MK-801 and dynorphin antiserum reversed clonidine-induced sensory hypersensitivity. CONCLUSIONS: alpha 2-Adrenoreceptor agonists produce sensory hypersensitivity that may be analogous to that produced by opioids. Sensory hypersensitivity was prevented by idazoxan, demonstrating that it is mediated by alpha 2 receptors. Clonidine infusion increased spinal dynorphin content. Sensory hypersensitivity was prevented or reversed by MK-801 and dynorphin antiserum, implicating N-methyl-D-aspartate receptors and spinal dynorphin in its production. Clinicians should be mindful of the possibility of drug-induced hyperalgesia in patients treated with alpha 2-adrenoreceptor agonists.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Agonistas alfa-Adrenérgicos/farmacologia , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/fisiopatologia , Animais , Clonidina/farmacologia , Maleato de Dizocilpina/farmacologia , Masculino , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo
9.
Proc Natl Acad Sci U S A ; 100(18): 10529-33, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12917492

RESUMO

We designed AM1241, a selective CB2 cannabinoid receptor agonist, and used it to test the hypothesis that CB2 receptor activation would reverse the sensory hypersensitivity observed in neuropathic pain states. AM1241 exhibits high affinity and selectivity for CB2 receptors. It also exhibits high potency in vivo. AM1241 dose-dependently reversed tactile and thermal hypersensitivity produced by ligation of the L5 and L6 spinal nerves in rats. These effects were selectively antagonized by a CB2 but not by a CB1 receptor antagonist, suggesting that they were produced by actions of AM1241 at CB2 receptors. AM1241 was also active in blocking spinal nerve ligation-induced tactile and thermal hypersensitivity in mice lacking CB1 receptors (CB1-/- mice), confirming that AM1241 reverses sensory hypersensitivity independent of actions at CB1 receptors. These findings demonstrate a mechanism leading to the inhibition of pain, one that targets receptors localized exclusively outside the CNS. Further, they suggest the potential use of CB2 receptor-selective agonists for treatment of human neuropathic pain, a condition currently without consistently effective therapies. CB2 receptor-selective agonist medications are predicted to be without the CNS side effects that limit the effectiveness of currently available medications.


Assuntos
Analgésicos/farmacologia , Encéfalo/efeitos dos fármacos , Dor/tratamento farmacológico , Receptor CB2 de Canabinoide , Receptores de Droga/efeitos dos fármacos , Analgésicos/uso terapêutico , Animais , Canabinoides , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides , Receptores de Droga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA