Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO J ; 37(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29449322

RESUMO

Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between ß-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Células Matadoras Naturais/imunologia , Mecanotransdução Celular/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Actomiosina/metabolismo , Células Cultivadas , Humanos , Conformação Proteica , Transdução de Sinais/imunologia
2.
Immunol Rev ; 256(1): 10-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24117810

RESUMO

The actin cytoskeleton network forms a key link between T-cell antigen receptor (TCR) stimulation and T-cell effector functions, providing a structural basis for T-cell morphological changes and signal transduction. Accumulating evidence positions the Wiskott-Aldrich syndrome protein (WASp), a scaffolding protein that promotes actin polymerization, at the center of actin cytoskeleton-dependent T-cell function. During the past decade, we and others have utilized multidisciplinary technologies, including live-cell imaging, biochemical, and biophysical analyses, to gain insight into the mechanisms by which WASp and other cytoskeletal proteins control actin homeostasis. Following TCR engagement, WASp is rapidly activated and recruited to TCR microclusters, as part of multiprotein complexes, where it promotes actin remodeling. Late in the activation process, WASp is internalized and eventually degraded. In this review, we describe the dynamic interactions of WASp with signaling proteins, which regulate its activation and recruitment to the TCR and to actin-rich sites. Finally, we present the molecular mechanism of WASp downregulation. Some of the signaling proteins that mediate WASp activation eventually lead to its degradation. Thus, we focus here on the regulation of WASp expression and function and the mechanisms whereby they control actin machinery and T-cell effector functions.


Assuntos
Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Animais , Homeostase , Humanos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Ligação Proteica , Transporte Proteico , Proteína da Síndrome de Wiskott-Aldrich/química
3.
Int J Mol Sci ; 13(6): 7629-7647, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837718

RESUMO

Actin polymerization is a fundamental cellular process regulating immune cell functions and the immune response. The Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor, which is exclusively expressed in hematopoietic cells, where it plays a key regulatory role in cytoskeletal dynamics. WASp interacting protein (WIP) was first discovered as the binding partner of WASp, through the use of the yeast two hybrid system. WIP was later identified as a chaperone of WASp, necessary for its stability. Mutations occurring at the WASp homology 1 domain (WH1), which serves as the WIP binding site, were found to cause the Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). WAS manifests as an immune deficiency characterized by eczema, thrombocytopenia, recurrent infections, and hematopoietic malignancies, demonstrating the importance of WIP for WASp complex formation and for a proper immune response. WIP deficiency was found to lead to different abnormalities in the activity of various lymphocytes, suggesting differential cell-dependent roles for WIP. Additionally, WIP deficiency causes cellular abnormalities not found in WASp-deficient cells, indicating that WIP fulfills roles beyond stabilizing WASp. Indeed, WIP was shown to interact with various binding partners, including the signaling proteins Nck, CrkL and cortactin. Recent studies have demonstrated that WIP also takes part in non immune cellular processes such as cancer invasion and metastasis, in addition to cell subversion by intracellular pathogens. Understanding of numerous functions of WIP can enhance our current understanding of activation and function of immune and other cell types.


Assuntos
Actinas/imunologia , Proteínas do Citoesqueleto/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Transdução de Sinais/imunologia , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Cortactina/genética , Cortactina/imunologia , Proteínas do Citoesqueleto/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia , Transdução de Sinais/genética , Trombocitopenia/genética , Trombocitopenia/imunologia , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/imunologia
4.
CRISPR J ; 5(1): 80-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049367

RESUMO

CRISPR-Cas technology has revolutionized gene editing, but concerns remain due to its propensity for off-target interactions. This, combined with genotoxicity related to both CRISPR-Cas9-induced double-strand breaks and transgene delivery, poses a significant liability for clinical genome-editing applications. Current best practice is to optimize genome-editing parameters in preclinical studies. However, quantitative tools that measure off-target interactions and genotoxicity are costly and time-consuming, limiting the practicality of screening large numbers of potential genome-editing reagents and conditions. Here, we show that flow-based imaging facilitates DNA damage characterization of hundreds of human hematopoietic stem and progenitor cells per minute after treatment with CRISPR-Cas9 and recombinant adeno-associated virus serotype 6. With our web-based platform that leverages deep learning for image analysis, we find that greater DNA damage response is observed for guide RNAs with higher genome-editing activity, differentiating even single on-target guide RNAs with different levels of off-target interactions. This work simplifies the characterization and screening process of genome-editing parameters toward enabling safer and more effective gene-therapy applications.


Assuntos
Dependovirus , Edição de Genes , Sistemas CRISPR-Cas/genética , Dano ao DNA/genética , Dependovirus/genética , Edição de Genes/métodos , Humanos , Células-Tronco
5.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258455

RESUMO

Natural killer (NK) cells play a crucial role in immunity, killing virally infected and cancerous cells. The balance of signals initiated upon engagement of activating and inhibitory NK receptors with cognate ligands determines killing or tolerance. Nevertheless, the molecular mechanisms regulating rapid NK cell discrimination between healthy and malignant cells in a heterogeneous tissue environment are incompletely understood. The SHP-1 tyrosine phosphatase is the central negative NK cell regulator that dephosphorylates key activating signaling proteins. Though the mechanism by which SHP-1 mediates NK cell inhibition has been partially elucidated, the pathways by which SHP-1 is itself regulated remain unclear. Here, we show that phosphorylation of SHP-1 in NK cells on the S591 residue by PKC-θ promotes the inhibited SHP-1 'folded' state. Silencing PKC-θ maintains SHP-1 in the active conformation, reduces NK cell activation and cytotoxicity, and promotes tumor progression in vivo. This study reveals a molecular pathway that sustains the NK cell activation threshold through suppression of SHP-1 activity.


Assuntos
Citotoxicidade Imunológica , Proteínas Tirosina Fosfatases , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais , Fosforilação , Proteína Quinase C-theta/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas Tirosina Fosfatases/metabolismo
6.
Front Immunol ; 9: 1428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013549

RESUMO

The Ebola virus (EBOV) uses evasion mechanisms that directly interfere with host T-cell antiviral responses. By steric shielding of human leukocyte antigen class-1, the Ebola glycoprotein (GP) blocks interaction with T-cell receptors (TCRs), thus rendering T cells unable to attack virus-infected cells. It is likely that this mechanism could promote increased natural killer (NK) cell activity against GP-expressing cells by preventing the engagement of NK inhibitory receptors; however, we found that primary human NK cells were less reactive to GP-expressing HEK293T cells. This was manifested as reduced cytokine secretion, a reduction in NK degranulation, and decreased lysis of GP-expressing target cells. We also demonstrated reduced recognition of GP-expressing cells by recombinant NKG2D and NKp30 receptors. In accordance, we showed a reduced monoclonal antibody-based staining of NKG2D and NKp30 ligands on GP-expressing target cells. Trypsin digestion of the membrane-associated GP led to a recovery of the recognition of membrane-associated NKG2D and NKp30 ligands. We further showed that membrane-associated GP did not shield recognition by KIR2DL receptors; in accordance, GP expression by target cells significantly perturbed signal transduction through activating, but not through inhibitory, receptors. Our results suggest a novel evasion mechanism employed by the EBOV to specifically avoid the NK cell immune response.

7.
J Mol Biol ; 429(23): 3606-3616, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29017837

RESUMO

Robo receptors play pivotal roles in axonal guidance as well as in neurogenesis, angiogenesis, cell migration, and cancer progression and invasiveness. They are considered to be attractive drug targets for the treatment of cancer, ocular neovascular disorders, chronic kidney diseases, and more. Despite their great importance, the mechanisms by which Robo receptors switch from their "off" to "on" states remain obscure. One possibility involves a monomer-to-dimer or dimer-to-monomer transition that facilitates the recruitment and activation of enzymatic effectors to instigate intracellular signaling. However, it is not known which domains mediate Robo dimerization, or the structural properties of the dimeric interactions. Here, we identify the extracellular Ig4 (D4) as a Robo dimerization domain. We have determined the crystal structure of the tandem Ig4-5 domains (D4-5) of human Robo2 and found that a hydrophobic surface on D4 mediates close homotypic contacts with a reciprocal D4. Analytical ultracentrifugation measurements of intact and mutated D4-5 shows that dimerization through the D4 interface is specific and has a dimerization dissociation constant of 16.9µM in solution. Direct fluorescence resonance energy transfer dimerization measurements in HEK293 cells corroborate the dimerization of transmembrane hRobo2 through D4, and a functional COS-7 cell collapse assay links D4-mediated dimerization with Robo intracellular signaling. The high level of conservation in the D4 dimerization interface throughout all Robo orthologs and paralogs implies that D4-mediated dimerization is a central hallmark in Robo activation and signaling.


Assuntos
Conformação Proteica , Multimerização Proteica , Receptores Imunológicos/química , Cristalografia por Raios X , Células HEK293 , Humanos , Domínios Proteicos
8.
Commun Integr Biol ; 9(6): e1216739, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28042374

RESUMO

Natural killer (NK) cells are essential for killing transformed and virally infected cells. To prevent auto-reactivity, NK cell activation is inhibited by inhibitory receptors that activate the tyrosine phosphatase SHP-1, which dephosphorylates signaling molecules crucial for NK cell activation. Initially, only a single SHP-1 substrate was identified in NK cells, the GEF VAV1. We recently demonstrated that under inhibitory conditions, LAT, PLCγ1 and PLCγ2 serve as novel SHP-1 substrates in NK cells. Furthermore, we showed that during NK cell inhibition, LAT is ubiquitylated by c-Cbl and Cbl-b, leading to its proteasomal degradation, abolishing NK cell cytotoxicity. Here, we address the mechanism through which the Cbl proteins are activated following inhibitory receptor engagement. We demonstrate that during NK cell inhibition, the expression level of the Cbl proteins significantly increases. These data suggest that inhibitory KIR receptors regulate the stability of the Cbl proteins, thereby enabling Cbl-mediated inhibition of NK cell cytotoxicity.

9.
Sci Signal ; 9(429): ra54, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27221712

RESUMO

Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Matadoras Naturais/citologia , Proteínas de Membrana/metabolismo , Fosfolipase C gama/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Cálcio/metabolismo , Linhagem Celular , DNA/metabolismo , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos , Processamento de Imagem Assistida por Computador , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Microscopia Confocal , Mutagênese , Mutação , Fosforilação , Ligação Proteica , Interferência de RNA , Receptores KIR2DL1/metabolismo , Transfecção , Ubiquitina/metabolismo
10.
FEBS Lett ; 588(21): 3808-15, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25218436

RESUMO

The Nck adapter protein is involved in key cellular functions, such as actin polymerization and reorganization, serving as a molecular bridge between the surface complex essential for foreign antigen recognition, the T-cell antigen receptor (TCR), and the actin machinery. However, the mechanisms regulating Nck expression and functions are unknown. In this study, we revealed Nck negative regulation and demonstrated that Nck is ubiquitylated following cellular activation. We identified the molecular determinants and mediators involved in this process. Our data suggest that Nck ubiquitylation might serve as a mechanism controlling Nck-mediated effector functions during cellular activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação para Baixo , Proteínas Oncogênicas/metabolismo , Ubiquitinação , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Adesão Celular , Inativação Gênica , Células HEK293 , Humanos , Células Jurkat , Mutação , Proteínas Oncogênicas/química , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-cbl/metabolismo , RNA Interferente Pequeno/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Domínios de Homologia de src
11.
J Leukoc Biol ; 96(5): 713-27, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210148

RESUMO

WIP plays an important role in the remodeling of the actin cytoskeleton, which controls cellular activation, proliferation, and function. WIP regulates actin polymerization by linking the actin machinery to signaling cascades. WIP binding to WASp and to its homolog, N-WASp, which are central activators of the actin-nucleating complex Arp2/3, regulates their cellular distribution, function, and stability. By binding to WASp, WIP protects it from degradation and thus, is crucial for WASp retention. Indeed, most mutations that result in WAS, an X-linked immunodeficiency caused by defective/absent WASp activity, are located in the WIP-binding region of WASp. In addition, by binding directly to actin, WIP promotes the formation and stabilization of actin filaments. WASp-independent activities of WIP constitute a new research frontier and are discussed extensively in this article. Here, we review the current information on WIP in human and mouse systems, focusing on its associated proteins, its molecular-regulatory mechanisms, and its role as a key regulator of actin-based processes in the immune system.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Proteínas de Transporte/química , Proteínas do Citoesqueleto/química , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Sinapses Imunológicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteína Quinase C/metabolismo , Transdução de Sinais , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
12.
Sci Signal ; 7(331): ra60, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24962707

RESUMO

Wiskott-Aldrich syndrome protein (WASp) is a key regulator of the actin cytoskeletal machinery. Binding of WASp-interacting protein (WIP) to WASp modulates WASp activity and protects it from degradation. Formation of the WIP-WASp complex is crucial for the adaptive immune response. We found that WIP and WASp interacted in cells through two distinct molecular interfaces. One interaction occurred between the WASp-homology-1 (WH1) domain of WASp and the carboxyl-terminal domain of WIP that depended on the phosphorylation status of WIP, which is phosphorylated by protein kinase C θ (PKCθ) in response to T cell receptor activation. The other interaction occurred between the verprolin homology, central hydrophobic region, and acidic region (VCA) domain of WASp and the amino-terminal domain of WIP. This latter interaction required actin, because it was inhibited by latrunculin A, which sequesters actin monomers. With triple-color fluorescence resonance energy transfer (3FRET) technology, we demonstrated that the WASp activation mechanism involved dissociation of the first interaction, while leaving the second interaction intact. This conformation exposed the ubiquitylation site on WASp, leading to degradation of WASp. Together, these data suggest that the activation and degradation of WASp are delicately balanced and depend on the phosphorylation state of WIP. Our molecular analysis of the WIP-WASp interaction provides insight into the regulation of actin-dependent processes.


Assuntos
Actinas/química , Proteínas do Citoesqueleto/química , Transferência Ressonante de Energia de Fluorescência/métodos , Peptídeos e Proteínas de Sinalização Intracelular/química , Conformação Proteica , Proteína da Síndrome de Wiskott-Aldrich/química , Actinas/metabolismo , Sítios de Ligação/genética , Western Blotting , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoenzimas/metabolismo , Células Jurkat , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Fosforilação , Proteína Quinase C/metabolismo , Proteína Quinase C-theta , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/genética , Linfócitos T/metabolismo , Linfócitos T/patologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA