Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dermatol Online J ; 26(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32155033

RESUMO

Toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS) are life-threatening, cutaneous reactions often associated with culprit drugs. A growing body of knowledge has deepened our understanding of the pathophysiology and clarified mechanisms such as drug-specific cytotoxicity mediated by T-cells, genetic linkage with HLA and non-HLA genes, TCR restriction, and cytotoxicity mechanisms. Physicians should broadly consider the etiology of SJS/TEN in order to better understand treatment strategies as well as identify which patients may be at risk for developing this condition. Mechanisms for how radiotherapy and rare malignancies may contribute to the development of TEN and SJS have been proposed.


Assuntos
Lipossarcoma/radioterapia , Radioterapia/efeitos adversos , Síndrome de Stevens-Johnson/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Lesões por Radiação , Pele/patologia , Síndrome de Stevens-Johnson/patologia
2.
J Am Soc Nephrol ; 26(4): 805-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25145934

RESUMO

TGF-ß(1) is a pleotropic growth factor that mediates glomerulosclerosis and podocyte apoptosis, hallmarks of glomerular diseases. The expression of microRNA-21 (miR-21) is regulated by TGF-ß(1), and miR-21 inhibits apoptosis in cancer cells. TGF-ß(1)-transgenic mice exhibit accelerated podocyte loss and glomerulosclerosis. We determined that miR-21 expression increases rapidly in cultured murine podocytes after exposure to TGF-ß(1) and is higher in kidneys of TGF-ß(1)-transgenic mice than wild-type mice. miR-21-deficient TGF-ß(1)-transgenic mice showed increased proteinuria and glomerular extracellular matrix deposition and fewer podocytes per glomerular tuft compared with miR-21 wild-type TGF-ß(1)-transgenic littermates. Similarly, miR-21 expression was increased in streptozotocin-induced diabetic mice, and loss of miR-21 in these mice was associated with increased albuminuria, podocyte depletion, and mesangial expansion. In cultured podocytes, inhibition of miR-21 was accompanied by increases in the rate of cell death, TGF-ß/Smad3-signaling activity, and expression of known proapoptotic miR-21 target genes p53, Pdcd4, Smad7, Tgfbr2, and Timp3. In American-Indian patients with diabetic nephropathy (n=48), albumin-to-creatinine ratio was positively associated with miR-21 expression in glomerular fractions (r=0.6; P<0.001) but not tubulointerstitial fractions (P=0.80). These findings suggest that miR-21 ameliorates TGF-ß(1) and hyperglycemia-induced glomerular injury through repression of proapoptotic signals, thereby inhibiting podocyte loss. This finding is in contrast to observations in murine models of tubulointerstitial kidney injury but consistent with findings in cancer models. The aggravation of glomerular disease in miR-21-deficient mice and the positive association with albumin-to-creatinine ratio in patients with diabetic nephropathy support miR-21 as a feedback inhibitor of TGF-ß signaling and functions.


Assuntos
Albuminúria/metabolismo , Nefropatias Diabéticas/metabolismo , Glomérulos Renais/metabolismo , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Animais , Apoptose , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Humanos , Glomérulos Renais/patologia , Masculino , Camundongos Endogâmicos DBA , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Smad/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA