RESUMO
We have demonstrated that the annealing process for cleaning pyrite surfaces is a critical parameter in promoting ordering on the surface and driving surface reactivity. Furthermore, we describe a spectroscopic surface characterization of the presence or absence of the surface ordering, as indicated by the Low Energy Electron Diffraction (LEED) pattern, as a function of the surface annealing process. Complementary X-ray photoemission spectroscopy (XPS) results provide evidence that longer annealing processes of over 3 hours repair the sulfur vacancies in the pyrite, making FeS species partially disappear in favor of FeS2 species. These features play an important role in molecular adsorption. We show that in the case of the cystine amino acid on the (100) pyrite surface, the substrate structure is responsible for the chemical adsorption form. The presence of an ordered structure on the surface, as indicated by the LEED pattern, favors the cystine NH3+ chemical form, whereas the absence of the surface ordering promotes cystine NH2 adsorption due to the sulfur-deficient surface. The cystine molecule could then act by changing its chemical functionalities to compensate for the iron surface coordination. The chemical molecular adsorption form can be selected by the surface annealing conditions, implying that environmental conditions could drive molecular adsorption on mineral surfaces. These findings are relevant in several surface processes, and they could play a possible role in prebiotic chemistry surface reactions and iron-sulfur scenarios.
RESUMO
We have studied the first stages leading to the formation of self-assembled monolayers of S-cysteine molecules adsorbed on a Au(111) surface. Density functional theory (DFT) calculations for the adsorption of individual cysteine molecules on Au(111) at room temperature show low-energy barriers all over the 2D Au(111) unit cell. As a consequence, cysteine molecules diffuse freely on the Au(111) surface and they can be regarded as a 2D molecular gas. The balance between molecule-molecule and molecule-substrate interactions induces molecular condensation and evaporation from the morphological surface structures (steps, reconstruction edges, etc.) as revealed by scanning tunnelling microscopy (STM) images. These processes lead progressively to the formation of a number of stable arrangements, not previously reported, such as single-molecular rows, trimers, and 2D islands. The condensation of these structures is driven by the aggregation of new molecules, stabilized by the formation of electrostatic interactions between adjacent NH(3)(+) and COO(-) groups, together with adsorption at a slightly more favorable quasi-top site of the herringbone Au reconstruction.
Assuntos
Cisteína/química , Ouro/química , Nanoestruturas , Difusão , Microscopia de TunelamentoRESUMO
SuperCam is a highly integrated remote-sensing instrumental suite for NASA's Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.
RESUMO
The molecular form of nitrogen, N2, is universally available but is biochemically inaccessible for life due to the strength of its triple bond. Prior to the emergence of life, there must have been an abiotic process that could fix nitrogen in a biochemically usable form. The UV photo-catalytic effects of minerals such as pyrite on nitrogen fixation have to date been overlooked. Here we show experimentally, using X-ray photoemission and infrared spectroscopies that, under a standard earth atmosphere containing nitrogen and water vapour at Earth or Martian pressures, nitrogen is fixed to pyrite as ammonium iron sulfate after merely two hours of exposure to 2,3 W/m 2 of ultraviolet irradiance in the 200-400 nm range. Our experiments show that this process exists also in the absence of UV, although about 50 times slower. The experiments also show that carbonates species are fixed on pyrite surface.
RESUMO
We present a DNA biosensor based on self-assembled monolayers (SAMs) of thiol-derivatized peptide nucleic acid (PNA) molecules adsorbed on gold surfaces. Previous works have shown that PNA molecules at an optimal concentration can be self-assembled with their molecular axes normal to the surface. In such structural configuration BioSAMs of PNAs maintain their capability for recognizing complementary DNA. We describe the combined use of PM-RAIRS and synchrotron radiation XPS for the detection and spectroscopic characterization of PNA-DNA hybridization process on gold surfaces. RAIRS and XPS are powerful techniques for surface characterization and molecular detection, which do not require a fluorescence labeling of the target. We present a characterization of the spectroscopic IR and XPS features, some of them associated to the phosphate groups of the DNA backbone, as an unambiguous signature of the PNA-DNA heteroduplex formation. The N(1s) XPS core level peak after DNA hybridization is decomposed in curves components, and every component assigned to different chemical species. Therefore, the results obtained by means of two complementary structural characterization techniques encourage the use of PNA-based biosensors for the detection of DNA molecules on natural samples.
Assuntos
Técnicas Biossensoriais/instrumentação , DNA/análise , Ouro , Ácidos Nucleicos Peptídicos , Espectrofotometria InfravermelhoRESUMO
Matrix isolation is a powerful tool for studying photochemical processes occurring in isolated molecules. In this way, we characterized the chemical modifications occurring within a tri peptide molecule, IGF, when exposed to the influence of Ultraviolet (UV) irradiation. This paper first describes the successful formation of the tripeptide (IGF) argon matrix under vacuum conditions, followed by the in situ UV irradiation and characterization of the molecular matrix reactivity after UV-irradiation. These studies have been performed by combining two complementary spectroscopic techniques, Fourier-Transform Reflexion Absorption Spectroscopy (FT-IRRAS) and X-ray Photoelectron Spectroscopy (XPS). The IR spectra of the isolated peptide-matrix, before and after UV irradiation, revealed significant differences that could be associated either to a partial deprotonation of the molecule or to a tautomeric conversion of some amide bonds to imide ones on some peptide molecules. XPS analyses undoubtedly confirmed the second hypothesis; the combination of IRRAS and XPS results provide evidence that UV irradiation of peptides induces a chemical reaction, namely a shift of the double bond, meaning partial conversion from amide tautomer into an imidic acid tautomer.
Assuntos
Argônio/química , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like I/química , Isomerismo , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Raios UltravioletaRESUMO
We have characterized self-assembled monolayers (SAMs) of thiol-derivatized peptide nucleic acid (PNA) chains adsorbed on gold surfaces by using reflection absorption infrared spectroscopy (RAIRS) and X-ray photoemission spectroscopy (XPS) techniques. We have found that the molecular orientation of PNAs strongly depends on surface coverage. At low coverage, PNA chains lie flat on the surface, while at high coverage, PNA molecules realign their molecular axes with the surface normal and form SAMs without the need of co-immobilization of spacers or other adjuvant molecules. The change in the molecular orientation has been studied by infrared spectroscopy and it has been confirmed by atomic force microscopy (AFM). PNA immobilization has been followed by analyzing the N(1s) XPS core-level peak. We show that the fine line shape of the N(1s) core-level peak at optimal concentration for biosensing is due to a chemical shift. A combination of the above-mentioned techniques allow us to affirm that the structure of the SAMs is stabilized by molecule-molecule interactions through noncomplementary adjacent nucleic bases.
Assuntos
Cisteína , Ouro , Ácidos Nucleicos Peptídicos/química , Cromatografia Líquida de Alta Pressão , Microscopia de Força Atômica , Modelos Moleculares , Conformação Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/isolamento & purificação , Espectrofotometria , Espectrofotometria InfravermelhoRESUMO
We report on the formation of ordered self-assembled monolayers (SAMs) of single-stranded peptide nucleic acids (ssPNA). In spite of their remarkable length (7 nm) thiolated PNAs assemble standing up on gold surfaces similarly to the SAMs of short alkanethiols. SAMs of ssPNA recognize complementary nucleic acids, acting as specific biosensors that discriminate even a point mutation in target ssDNA. These results are obtained by surface characterization techniques that avoid labeling of the target molecule: x-ray photoemission, x-ray absorption and atomic force microscopy.
Assuntos
DNA de Cadeia Simples/química , Ácidos Nucleicos Peptídicos/química , Microscopia de Força Atômica , Modelos Moleculares , Espectrometria por Raios X , Compostos de Sulfidrila/químicaRESUMO
(S)-Cysteine has been deposited on a Cu110 surface from sublimation of a crystalline phase. The surface was characterized by Fourier transform reflection absorption infrared spectroscopy (FT-RAIRS) during exposure and compared to the same copper surface after immersion into cysteine solutions at various pH values. X-ray photoelectron spectroscopy (XPS) measurements provided a chemical characterization of the surface at certain stages. The combination of these two techniques highlighted the importance of the cysteine "source" for the adsorbed form of the molecules and the mode of interaction. The zwitterionic amino acid was found to be predominant after adsorption at pH values close to the isoelectric point (IEP) of the molecule but also when the layer was formed in the vapor phase. This state was very sensitive to the atmosphere, contained an excess of hydroxyls, and/or underwent reduction into the anionic form when in contact with water or air. Weakly bound cysteine or cystine molecules, formed in the adsorbed phase, were considered to explain the average thickness of the adsorbed layer that was close to 20 A. As expected, immersion in very acidic or very basic solutions led to cationic and anionic forms, respectively.