Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 315(3): L339-L347, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722563

RESUMO

Conventional resuscitation (CR) of hemorrhagic shock (HS), a significant cause of trauma mortality, is intravenous blood and fluids. CR restores central hemodynamics, but vital organ flow can drop, causing hypoperfusion, hypoxia, damage-associated molecular patterns (DAMPs), and remote organ dysfunction (i.e., lung). CR plus direct peritoneal resuscitation (DPR) prevents intestinal and hepatic hypoperfusion. We hypothesized that DPR prevents lung injury in HS/CR by altering DAMPs. Anesthetized male Sprague-Dawley rats were randomized to groups ( n = 8/group) in one of two sets: 1) sham (no HS, CR, or DPR), 2) HS/CR (HS = 40% mean arterial pressure (MAP) for 60 min, CR = shed blood + 2 volumes normal saline), or 3) HS/CR + DPR. The first set underwent whole lung blood flow by colorimetric microspheres. The second set underwent tissue collection for Luminex, ELISAs, and histopathology. Lipopolysaccharide (LPS) and DAMPs were measured in serum and/or lung, including cytokines, hyaluronic acid (HA), high-mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 protein (MYD88), and TIR-domain-containing adapter-inducing interferon-ß (TRIF). Statistics were by ANOVA and Tukey-Kramer test with a priori P < 0.05. HS/CR increased serum LPS, HA, HMGB1, and some cytokines [interleukin (IL)-1α, IL-1ß, IL-6, and interferon-γ]. Lung TLR4 and MYD88 were increased but not TRIF compared with Shams. HS/CR + DPR decreased LPS, HA, cytokines, HMGB1, TLR4, and MYD88 levels but did not alter TRIF compared with HS/CR. The data suggest that gut-derived DAMPs can be modulated by adjunctive DPR to prevent activation of lung TLR-4-mediated processes. Also, DPR improved lung blood flow and reduced lung tissue injury. Adjunctive DPR in HS/CR potentially improves morbidity and mortality by downregulating the systemic DAMP response.


Assuntos
Hidratação , Lesão Pulmonar/prevenção & controle , Ressuscitação , Choque Hemorrágico/terapia , Animais , Pressão Sanguínea , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Masculino , Fator 88 de Diferenciação Mieloide/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Choque Hemorrágico/fisiopatologia , Receptor 4 Toll-Like/metabolismo
2.
JAMA Surg ; 151(3): 265-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26559151

RESUMO

IMPORTANCE: Hemorrhagic shock (HS) due to trauma remains a major cause of morbidity and mortality in the United States, despite continuing progression of advanced life support and treatment. Trauma is the third most common cause of death worldwide and is the leading cause of death in the 1- to 44-year-old age group. Hemorrhagic shock often progresses to multiple organ failure despite conventional resuscitation (CR) that restores central hemodynamics. OBJECTIVE: To examine whether MC-2 would bind glycosaminoglycans to decrease proinflammatory cytokines' influence in the liver, minimize organ edema, prevent liver injury, and improve hepatic perfusion. MC-2, a synthetic octapeptide derived from the heparin-binding domain of murine interferon gamma (IFN-γ), binds glycosaminoglycans to modulate serum and interstitial cytokine levels and activity. DESIGN, SETTING, AND PARTICIPANTS: A controlled laboratory study of 3y male Sprague-Dawley rats that were randomized to 4 groups of 8 each: sham, sham+MC-2 (50 mg/kg), HS/CR, or HS/CR+MC-2 (HS = 40% of baseline mean arterial pressure for 60 minutes; CR = return of shed blood and 2 volumes of saline). The study began in March, 2013. MAIN OUTCOMES AND MEASURES: Effective hepatic blood flow (EHBF) by galactose clearance, wet-dry weights, cytokines, histopathology, complete metabolic panel, and complete blood cell count were performed at 4 hours after CR. RESULTS: MC-2 partially reversed the HS/CR-induced hepatic hypoperfusion at 3 and 4 hours postresuscitation compared with HS/CR alone. Effective hepatic blood flow decreased during the HS period from a mean (SD) of 7.4 (0.3) mL/min/100 g and 7.5 (0.5) mL/min/100g at baseline to 3.7 (0.4) mL/min/100g and 5.9 (0.5) mL/min/100g for the HS/CR and HS/CR+MC-2 groups, respectively (P <.05). Effective hepatic blood flow remained constant in the sham groups throughout the experimental protocol. Organ edema was increased in the ileum and liver in the HS/CR vs sham group, and MC-2 decreased edema in the ileum vs the HS/CR group. MC-2 in HS also decreased levels of alanine aminotransferase, zonula occludens-1, and interleukin-1ß compared with HS/CR alone. CONCLUSIONS AND RELEVANCE: MC-2 was associated with decreased liver injury, enhanced effective hepatic blood flow, decreased cytokines, and prevention of edema formation in the ileum when administered with CR following HS. These data suggest that the MC-2 peptide could be a potential therapeutic approach to target cytokine and chemokine interactions, which might limit multiple organ failure and decrease mortality in hemorrhagic shock.


Assuntos
Interferon gama/sangue , Circulação Hepática/fisiologia , Falência Hepática/sangue , Fragmentos de Peptídeos/sangue , Perfusão/efeitos adversos , Ressuscitação/efeitos adversos , Choque Hemorrágico/terapia , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Falência Hepática/etiologia , Falência Hepática/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/fisiologia , Choque Hemorrágico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA