Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 34(6): 1414-21, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22113992

RESUMO

PURPOSE: To demonstrate that, when injecting an artificial reference signal for quantitation purposes, the real and artificial signals can be acquired separately, using a single radiofrequency (RF) channel, with no loss of fidelity. Conversion of MR signals to units of concentration can be simplified by injection of a precalibrated, artificial reference signal, or pseudo-signal. In previous implementations, the pseudo-signal was acquired simultaneously with the real signals arising from the sample and this requires a second, integrated RF channel. MATERIALS AND METHODS: We used in vivo spectroscopy and in vitro imaging measurements to test the validity of the separate acquisition method. RESULTS: There was very strong correlation (r = 0.94; P = 0.02) between the in vivo concentrations determined with separate and simultaneous acquisition methods. The in vitro measurements validated that the separate acquisition method compensates for differences in coil loading conditions as well as the simultaneous acquisition method. CONCLUSION: Separate acquisition eliminates the need for a second RF channel, which allows easier implementation at sites that have only one channel available, and relaxes the constraints on the number and amplitude of pseudo-signals. This flexibility can be exploited to increase the signal to noise ratio of the pseudo-signal and reduce variability when making the conversion to units of concentration.


Assuntos
Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Calibragem , Flúor , Humanos , Imagens de Fantasmas
2.
J Magn Reson ; 194(1): 67-75, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18595750

RESUMO

Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA