Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 186(20): 4404-4421.e20, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774679

RESUMO

Persistent DNA double-strand breaks (DSBs) in neurons are an early pathological hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with the potential to disrupt genome integrity. We used single-nucleus RNA-seq in human postmortem prefrontal cortex samples and found that excitatory neurons in AD were enriched for somatic mosaic gene fusions. Gene fusions were particularly enriched in excitatory neurons with DNA damage repair and senescence gene signatures. In addition, somatic genome structural variations and gene fusions were enriched in neurons burdened with DSBs in the CK-p25 mouse model of neurodegeneration. Neurons enriched for DSBs also had elevated levels of cohesin along with progressive multiscale disruption of the 3D genome organization aligned with transcriptional changes in synaptic, neuronal development, and histone genes. Overall, this study demonstrates the disruption of genome stability and the 3D genome organization by DSBs in neurons as pathological steps in the progression of neurodegenerative diseases.


Assuntos
Quebras de DNA de Cadeia Dupla , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , DNA , Reparo do DNA/genética , Doenças Neurodegenerativas/genética , Neurônios/fisiologia , Análise de Célula Única , Análise de Sequência de RNA , Instabilidade Genômica
2.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774678

RESUMO

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Regulação da Expressão Gênica , Inflamação/patologia , Microglia/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Epigenoma
3.
Cell ; 186(20): 4422-4437.e21, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774680

RESUMO

Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.


Assuntos
Doença de Alzheimer , Encéfalo , Regulação da Expressão Gênica , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Epigenoma , Epigenômica , Estudo de Associação Genômica Ampla
4.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774677

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Assuntos
Doença de Alzheimer , Encéfalo , Idoso , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cognição , Disfunção Cognitiva/metabolismo , Neurônios/metabolismo
5.
Nature ; 603(7903): 893-899, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35158371

RESUMO

Despite the importance of the cerebrovasculature in maintaining normal brain physiology and in understanding neurodegeneration and drug delivery to the central nervous system1, human cerebrovascular cells remain poorly characterized owing to their sparsity and dispersion. Here we perform single-cell characterization of the human cerebrovasculature using both ex vivo fresh tissue experimental enrichment and post mortem in silico sorting of human cortical tissue samples. We capture 16,681 cerebrovascular nuclei across 11 subtypes, including endothelial cells, mural cells and three distinct subtypes of perivascular fibroblast along the vasculature. We uncover human-specific expression patterns along the arteriovenous axis and determine previously uncharacterized cell-type-specific markers. We use these human-specific signatures to study changes in 3,945 cerebrovascular cells from patients with Huntington's disease, which reveal activation of innate immune signalling in vascular and glial cell types and a concomitant reduction in the levels of proteins critical for maintenance of blood-brain barrier integrity. Finally, our study provides a comprehensive molecular atlas of the human cerebrovasculature to guide future biological and therapeutic studies.


Assuntos
Células Endoteliais , Doença de Huntington , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Doença de Huntington/metabolismo , Sistema Imunitário , Neuroglia , Proteínas/metabolismo
6.
Nature ; 611(7937): 769-779, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36385529

RESUMO

APOE4 is the strongest genetic risk factor for Alzheimer's disease1-3. However, the effects of APOE4 on the human brain are not fully understood, limiting opportunities to develop targeted therapeutics for individuals carrying APOE4 and other risk factors for Alzheimer's disease4-8. Here, to gain more comprehensive insights into the impact of APOE4 on the human brain, we performed single-cell transcriptomics profiling of post-mortem human brains from APOE4 carriers compared with non-carriers. This revealed that APOE4 is associated with widespread gene expression changes across all cell types of the human brain. Consistent with the biological function of APOE2-6, APOE4 significantly altered signalling pathways associated with cholesterol homeostasis and transport. Confirming these findings with histological and lipidomic analysis of the post-mortem human brain, induced pluripotent stem-cell-derived cells and targeted-replacement mice, we show that cholesterol is aberrantly deposited in oligodendrocytes-myelinating cells that are responsible for insulating and promoting the electrical activity of neurons. We show that altered cholesterol localization in the APOE4 brain coincides with reduced myelination. Pharmacologically facilitating cholesterol transport increases axonal myelination and improves learning and memory in APOE4 mice. We provide a single-cell atlas describing the transcriptional effects of APOE4 on the aging human brain and establish a functional link between APOE4, cholesterol, myelination and memory, offering therapeutic opportunities for Alzheimer's disease.


Assuntos
Apolipoproteína E4 , Encéfalo , Colesterol , Fibras Nervosas Mielinizadas , Oligodendroglia , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Colesterol/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Autopsia , Células-Tronco Pluripotentes Induzidas , Neurônios/metabolismo , Neurônios/patologia , Heterozigoto , Transporte Biológico , Homeostase , Análise de Célula Única , Memória , Envelhecimento/genética , Perfilação da Expressão Gênica , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia
7.
Immunity ; 48(3): 476-478, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562197

RESUMO

The epigenetic mechanisms controlling microglia functions are largely unknown. In this issue of Immunity, Datta et al. (2018) uncover surprising and distinct effects of deleting the epigenetic regulators HDAC1 and HDAC2 during microglial development versus during the course of neurodegeneration.


Assuntos
Histona Desacetilase 2/genética , Microglia , Epigênese Genética
8.
Nature ; 570(7761): 332-337, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31042697

RESUMO

Alzheimer's disease is a pervasive neurodegenerative disorder, the molecular complexity of which remains poorly understood. Here, we analysed 80,660 single-nucleus transcriptomes from the prefrontal cortex of 48 individuals with varying degrees of Alzheimer's disease pathology. Across six major brain cell types, we identified transcriptionally distinct subpopulations, including those associated with pathology and characterized by regulators of myelination, inflammation, and neuron survival. The strongest disease-associated changes appeared early in pathological progression and were highly cell-type specific, whereas genes upregulated at late stages were common across cell types and primarily involved in the global stress response. Notably, we found that female cells were overrepresented in disease-associated subpopulations, and that transcriptional responses were substantially different between sexes in several cell types, including oligodendrocytes. Overall, myelination-related processes were recurrently perturbed in multiple cell types, suggesting that myelination has a key role in Alzheimer's disease pathophysiology. Our single-cell transcriptomic resource provides a blueprint for interrogating the molecular and cellular basis of Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Análise de Célula Única , Transcriptoma , Envelhecimento/genética , Envelhecimento/patologia , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Especificidade de Órgãos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Análise de Sequência de RNA , Caracteres Sexuais
9.
Nature ; 571(7763): E1, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31209304

RESUMO

Change history: In this Article, the Acknowledgements section should have included that the work was supported in part by the Cure Alzheimer's Fund (CAF), and the final NIH grant acknowledged should have been 'U01MH119509' instead of 'RF1AG054012'. In Supplementary Table 2, the column labels 'early.pathology.mean' and 'late.pathology.mean' were reversed in each worksheet (that is, columns Y and Z). These errors have been corrected online.

10.
Nature ; 562(7725): E1, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30046102

RESUMO

Change history: In this Article, Extended Data Fig. 8 and Extended Data Table 1 contained errors, which have been corrected online.

11.
Nature ; 540(7632): 230-235, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27929004

RESUMO

Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-ß (Aß)1-40 and Aß 1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aß. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aß1-40 and Aß1-42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Ritmo Gama , Microglia/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/prevenção & controle , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Forma Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Ritmo Gama/efeitos da radiação , Interneurônios/metabolismo , Interneurônios/efeitos da radiação , Luz , Masculino , Camundongos , Microglia/citologia , Microglia/efeitos da radiação , Optogenética , Parvalbuminas/metabolismo , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/terapia , Transcriptoma , Córtex Visual/fisiologia , Córtex Visual/efeitos da radiação
12.
Mol Cell ; 54(5): 751-65, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24768538

RESUMO

MicroRNAs (miRNAs) control gene expression by regulating mRNA translation and stability. The CCR4-NOT complex is a key effector of miRNA function acting downstream of GW182/TNRC6 proteins. We show that miRNA-mediated repression requires the central region of CNOT1, the scaffold protein of CCR4-NOT. A CNOT1 domain interacts with CNOT9, which in turn interacts with the silencing domain of TNRC6 in a tryptophan motif-dependent manner. These interactions are direct, as shown by the structure of a CNOT9-CNOT1 complex with bound tryptophan. Another domain of CNOT1 with an MIF4G fold recruits the DEAD-box ATPase DDX6, a known translational inhibitor. Structural and biochemical approaches revealed that CNOT1 modulates the conformation of DDX6 and stimulates ATPase activity. Structure-based mutations showed that the CNOT1 MIF4G-DDX6 interaction is important for miRNA-mediated repression. These findings provide insights into the repressive steps downstream of the GW182/TNRC6 proteins and the role of the CCR4-NOT complex in posttranscriptional regulation in general.


Assuntos
RNA Helicases DEAD-box/química , MicroRNAs/genética , Proteínas Proto-Oncogênicas/química , Interferência de RNA , Fatores de Transcrição/química , Substituição de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Nature ; 518(7539): 365-9, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25693568

RESUMO

Alzheimer's disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-ß plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune-cell-specific enhancer signatures as well as immune cell expression quantitative trait loci, while decreasing-level enhancer orthologues show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologues, implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants, and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Epigênese Genética/genética , Modelos Biológicos , Doença de Alzheimer/fisiopatologia , Animais , Cromatina/genética , Cromatina/metabolismo , Sequência Conservada , Modelos Animais de Doenças , Regulação para Baixo/genética , Elementos Facilitadores Genéticos/genética , Epigenômica , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Humanos , Imunidade/genética , Memória/fisiologia , Camundongos , Plasticidade Neuronal/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Transcrição Gênica/genética , Regulação para Cima/genética
14.
Mol Cell ; 35(6): 868-80, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19716330

RESUMO

MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.


Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Animais , Proteínas Argonautas , Ascite/genética , Ascite/metabolismo , Autoantígenos/metabolismo , Sítios de Ligação , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Sistema Livre de Células , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Exorribonucleases , Células HeLa , Humanos , Cinética , Camundongos , Proteínas de Ligação a Poli(A)/genética , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Proteínas/genética , Estabilidade de RNA , Complexo de Inativação Induzido por RNA/genética , Receptores CCR4/metabolismo , Proteínas Repressoras , Ribonucleases , Transfecção
15.
Nat Neurosci ; 26(6): 970-982, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37264161

RESUMO

Cerebrovascular dysregulation is a hallmark of Alzheimer's disease (AD), but the changes that occur in specific cell types have not been fully characterized. Here, we profile single-nucleus transcriptomes in the human cerebrovasculature in six brain regions from 220 individuals with AD and 208 age-matched controls. We annotate 22,514 cerebrovascular cells, including 11 subtypes of endothelial, pericyte, smooth muscle, perivascular fibroblast and ependymal cells. We identify 2,676 differentially expressed genes in AD, including downregulation of PDGFRB in pericytes, and of ABCB1 and ATP10A in endothelial cells, and validate the downregulation of SLC6A1 and upregulation of APOD, INSR and COL4A1 in postmortem AD brain tissues. We detect vasculature, glial and neuronal coexpressed gene modules, suggesting coordinated neurovascular unit dysregulation in AD. Integration with AD genetics reveals 125 AD differentially expressed genes directly linked to AD-associated genetic variants. Lastly, we show that APOE4 genotype-associated differences are significantly enriched among AD-associated genes in capillary and venule endothelial cells, as well as subsets of pericytes and fibroblasts.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Transcriptoma , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Perfilação da Expressão Gênica
16.
Sci Transl Med ; 15(692): eabq1019, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075128

RESUMO

The neural circuits governing the induction and progression of neurodegeneration and memory impairment in Alzheimer's disease (AD) are incompletely understood. The mammillary body (MB), a subcortical node of the medial limbic circuit, is one of the first brain regions to exhibit amyloid deposition in the 5xFAD mouse model of AD. Amyloid burden in the MB correlates with pathological diagnosis of AD in human postmortem brain tissue. Whether and how MB neuronal circuitry contributes to neurodegeneration and memory deficits in AD are unknown. Using 5xFAD mice and postmortem MB samples from individuals with varying degrees of AD pathology, we identified two neuronal cell types in the MB harboring distinct electrophysiological properties and long-range projections: lateral neurons and medial neurons. lateral MB neurons harbored aberrant hyperactivity and exhibited early neurodegeneration in 5xFAD mice compared with lateral MB neurons in wild-type littermates. Inducing hyperactivity in lateral MB neurons in wild-type mice impaired performance on memory tasks, whereas attenuating aberrant hyperactivity in lateral MB neurons ameliorated memory deficits in 5xFAD mice. Our findings suggest that neurodegeneration may be a result of genetically distinct, projection-specific cellular dysfunction and that dysregulated lateral MB neurons may be causally linked to memory deficits in AD.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/patologia , Corpos Mamilares/metabolismo , Corpos Mamilares/patologia , Camundongos Transgênicos , Neurônios/metabolismo , Encéfalo/metabolismo , Transtornos da Memória/patologia , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
17.
Nat Neurosci ; 25(10): 1379-1393, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36180790

RESUMO

Environmental cues influence the highly dynamic morphology of microglia. Strategies to characterize these changes usually involve user-selected morphometric features, which preclude the identification of a spectrum of context-dependent morphological phenotypes. Here we develop MorphOMICs, a topological data analysis approach, which enables semiautomatic mapping of microglial morphology into an atlas of cue-dependent phenotypes and overcomes feature-selection biases and biological variability. We extract spatially heterogeneous and sexually dimorphic morphological phenotypes for seven adult mouse brain regions. This sex-specific phenotype declines with maturation but increases over the disease trajectories in two neurodegeneration mouse models, with females showing a faster morphological shift in affected brain regions. Remarkably, microglia morphologies reflect an adaptation upon repeated exposure to ketamine anesthesia and do not recover to control morphologies. Finally, we demonstrate that both long primary processes and short terminal processes provide distinct insights to morphological phenotypes. MorphOMICs opens a new perspective to characterize microglial morphology.


Assuntos
Ketamina , Microglia , Animais , Encéfalo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Fenótipo
18.
RNA ; 15(5): 781-93, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19304925

RESUMO

Proteins of the GW182 family play an important role in the execution of microRNA repression in metazoa. They interact directly with Argonaute proteins, components of microRNPs, and also form part of P-bodies, structures implicated in translational repression and mRNA degradation. Recent results demonstrated that Drosophila GW182 has the potential to both repress translation and accelerate mRNA deadenylation and decay. In contrast to a single GW182 protein in Drosophila, the three GW182 paralogs TNRC6A, TNRC6B, and TNRC6C are encoded in mammalian genomes. In this study, we provide evidence that TNRC6C, like TNRC6A and TNRC6B, is important for efficient miRNA repression. We further demonstrate that tethering of each of the human TNRC6 proteins to a reporter mRNA has a dramatic inhibitory effect on protein synthesis. The repression is due to a combination of effects on the mRNA level and mRNA translation. Through deletion and mutagenesis, we identified the C-terminal part of TNRC6C encompassing the RRM RNA-binding motif as a key effector domain mediating protein synthesis repression by TNRC6C.


Assuntos
MicroRNAs/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Mutagênese , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
19.
PLoS Biol ; 6(4): e92, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18447580

RESUMO

Translation termination at premature termination codons (PTCs) triggers degradation of the aberrant mRNA, but the mechanism by which a termination event is defined as premature is still unclear. Here we show that the physical distance between the termination codon and the poly(A)-binding protein PABPC1 is a crucial determinant for PTC recognition in human cells. "Normal" termination codons can trigger nonsense-mediated mRNA decay (NMD) when this distance is extended; and vice versa, NMD can be suppressed by folding the poly(A) tail into proximity of a PTC or by tethering of PABPC1 nearby a PTC, indicating an evolutionarily conserved function of PABPC1 in promoting correct translation termination and antagonizing activation of NMD. Most importantly, our results demonstrate that spatial rearrangements of the 3' untranslated region can modulate the NMD pathway and thereby provide a novel mechanism for posttranscriptional gene regulation.


Assuntos
Regiões 3' não Traduzidas/metabolismo , Processamento Pós-Transcricional do RNA , Códon sem Sentido/metabolismo , Humanos , Poli A/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo
20.
Sci Transl Med ; 13(622): eabe3947, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34851693

RESUMO

The hemizygous R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), a microglia-specific gene in the brain, increases risk for late-onset Alzheimer's disease (AD). Using transcriptomic analysis of single nuclei from brain tissues of patients with AD carrying the R47H mutation or the common variant (CV)­TREM2, we found that R47H-associated microglial subpopulations had enhanced inflammatory signatures reminiscent of previously identified disease-associated microglia (DAM) and hyperactivation of AKT, one of the signaling pathways downstream of TREM2. We established a tauopathy mouse model with heterozygous knock-in of the human TREM2 with the R47H mutation or CV and found that R47H induced and exacerbated TAU-mediated spatial memory deficits in female mice. Single-cell transcriptomic analysis of microglia from these mice also revealed transcriptomic changes induced by R47H that had substantial overlaps with R47H microglia in human AD brains, including robust increases in proinflammatory cytokines, activation of AKT signaling, and elevation of a subset of DAM signatures. Pharmacological AKT inhibition with MK-2206 largely reversed the enhanced inflammatory signatures in primary R47H microglia treated with TAU fibrils. In R47H heterozygous tauopathy mice, MK-2206 treatment abolished a tauopathy-dependent microglial subcluster and rescued tauopathy-induced synapse loss. By uncovering disease-enhancing mechanisms of the R47H mutation conserved in human and mouse, our study supports inhibitors of AKT signaling as a microglial modulating strategy to treat AD.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA