Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 322, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013385

RESUMO

The global trade in cephalopods is a multi-billion dollar business involving the fishing and production of more than ten commercially valuable species. It also contributes, in whole or in part, to the subsistence and economic livelihoods of thousands of coastal communities around the world. The importance of cephalopods as a major cultural, social, economic, and ecological resource has been widely recognised, but research efforts to describe the extent and scope of the global cephalopod trade are limited. So far, there are no specific regulatory and monitoring systems in place to analyse the traceability of the global trade in cephalopods at the international level. To understand who are the main global players in cephalopod seafood markets, this paper provides, for the first time, a global overview of the legal trade in cephalopods. Twenty years of records compiled in the UN COMTRADE database were analysed. The database contained 115,108 records for squid and cuttlefish and 71,659 records for octopus, including commodity flows between traders (territories or countries) weighted by monetary value (USD) and volume (kg). A theoretical network analysis was used to identify the emergent properties of this large trade network by analysing centrality measures that revealed key insights into the role of traders. The results illustrate that three countries (China, Spain, and Japan) led the majority of global market movements between 2000 and 2019. Based on volume and value, as well as the number of transactions, 11 groups of traders were identified. The leading cluster consisted of only eight traders, who dominated the cephalopod market in Asia (China, India, South Korea, Thailand, and Vietnam), Europe (the Netherlands, and Spain), and the USA. This paper identifies the countries and territories that acted as major importers or exporters, the best-connected traders, the hubs or accumulators, the modulators, the main flow routes, and the weak points of the global cephalopod trade network over the last 20 years. This knowledge of the network is crucial to move towards an environmentally sustainable, transparent, and food-secure global cephalopod trade.

2.
Animals (Basel) ; 12(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35953924

RESUMO

The Iberian porpoise population is small and under potentially unsustainable removal by fisheries bycatch. Recently, a marine Site of Community Importance (SCI) was legally approved in Portugal, but no measures ensued to promote porpoise conservation. Information about porpoise abundance and distribution is fundamental to guide any future conservation measures. Annual aerial surveys conducted between 2011 and 2015 show a low overall porpoise abundance and density (2254 individuals; 0.090 ind/km2, CV = 21.99%) in the Portuguese coast. The highest annual porpoise estimates were registered in 2013 (3207 individuals, 0.128 ind/km2), followed by a sharp decrease in 2014 (1653 individuals, 0.066 ind/km2). The porpoise density and abundance estimated in 2015 remained lower than the 2013 estimates. A potential distribution analysis of the Iberian porpoise population was performed using ensembles of small models (ESMs) with MaxEnt and showed that the overall habitat suitability is particularly high in the Portuguese northern area. The analysis also suggested a different pattern in porpoise potential distribution across the study period. These results emphasize the importance of further porpoise population assessments to fully understand the spatial and temporal porpoise habitat use in the Iberian Peninsula as well as the urgent need for on-site threat mitigation measures.

4.
PLoS One ; 8(10): e76688, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098550

RESUMO

Organic falls create localised patches of organic enrichment and disturbance where enhanced degradation is mediated by diversified microbial assemblages and specialized fauna. The view of organic falls as "stepping stones" for the colonization of deep-sea reducing environments has been often loosely used, but much remains to be proven concerning their capability to bridge dispersal among such environments. Aiming the clarification of this issue, we used an experimental approach to answer the following questions: Are relatively small organic falls in the deep sea capable of sustaining taxonomically and trophically diverse assemblages over demographically relevant temporal scales? Are there important depth- or site-related sources of variability for the composition and structure of these assemblages? Is the proximity of other reducing environments influential for their colonization? We analysed the taxonomical and trophic diversity patterns and partitioning (α- and ß-diversity) of the macrofaunal assemblages recruited in small colonization devices with organic and inorganic substrata after 1-2 years of deployment on mud volcanoes of the Gulf of Cádiz. Our results show that small organic falls can sustain highly diverse and trophically coherent assemblages for time periods allowing growth to reproductive maturity, and successive generations of dominant species. The composition and structure of the assemblages showed variability consistent with their biogeographic and bathymetric contexts. However, the proximity of cold seeps had limited influence on the similarity between the assemblages of these two habitats and organic falls sustained a distinctive fauna with dominant substrate-specific taxa. We conclude that it is unlikely that small organic falls may regularly ensure population connectivity among cold seeps and vents. They may be a recurrent source of evolutionary candidates for the colonization of such ecosystems. However, there may be a critical size of organic fall to create the necessary intense and persistent reducing conditions for sustaining typical chemosymbiotic vent and seep organisms.


Assuntos
Organismos Aquáticos/fisiologia , Evolução Biológica , Ecossistema , Invertebrados/fisiologia , Animais , Organismos Aquáticos/classificação , Oceano Atlântico , Biodiversidade , Cadeia Alimentar , Invertebrados/classificação , Oxirredução , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA