Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022930

RESUMO

Efficient organic electronic devices are fabricated from both small molecules and disperse polymers, but materials with characteristics in between remain largely unexplored. Here, we present a gram-scale synthesis for a series of discrete n-type oligomers comprising alternating naphthalene diimide (NDI) and bithiophene (T2). Using C-H activation, discrete oligomers of type T2-(NDI-T2)n (n ≤ 7) and persistence lengths up to ∼10 nm are made. The absence of protection/deprotection reactions and the mechanistic nature of Pd-catalyzed C-H activation allow one to produce symmetrically terminated species almost exclusively, which is key to the fast preparation, high yields, and the general success of the reaction pathway. The reaction scope includes different thiophene-based monomers, end-capping to yield NDI-(T2-NDI)n (n ≤ 8), and branching at T2 units by nonselective C-H activation under certain conditions. We show how the optical, electronic, thermal, and structural properties depend on oligomer length along with a comparison to the disperse, polymeric analogue PNDIT2. From theory and experiments, we find that the molecular energy levels are not affected by chain length resulting from the strong donor-acceptor system. Absorption maxima saturate for n = 4 in vacuum and for n = 8 in solution. Linear oligomers T2-(NDI-T2)n are highly crystalline with large melting enthalpies up to 33 J/g; NDI-terminated oligomers show reduced crystallinity, stronger supercooling, and more phase transitions. Branched oligomers and those with bulky thiophene comonomers are amorphous. Large oligomers exhibit similar packing characteristics compared to PNDIT2, making these oligomers ideal models to study length-structure-function relationships at constant energy levels.

2.
Phys Chem Chem Phys ; 25(30): 20395-20404, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37465922

RESUMO

Inverse vulcanization is a promising route to stabilize sulfur in lithium-sulfur batteries, but the resulting sulfur strand lengths in the materials are elusive. We address the strand length by characterization via sulfur near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Theoretical predictions of NEXAFS spectra for model molecules containing strands with up to three sulfur atoms are verified by experiment. The near perfect agreement between simulation and experiment on the absolute energy scale allows for the predictions for larger chain lengths also. Inspection and interpretation of NEXAFS spectra from real battery materials on this basis reveals the appearance of single connecting sulfur atoms for very low sulfur content, and of longer strands when the sulfur fraction increases.

3.
J Chem Phys ; 151(23): 234901, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864273

RESUMO

Balanced charge transport is particularly important for transistors. Hence, ambipolar organic semiconductors with comparable transport capabilities for both positive and negative charges are highly sought-after. Here, we report detailed insights into the electronic structure of PNDITBT, which is an alternating copolymer of naphthalene diimide (NDI), thiophene, benzothiodiazole (B), and thiophene (T) units, as gained by time-resolved electron paramagnetic resonance (TREPR) spectroscopy combined with quantum-chemical calculations. The results are compared to those obtained for PNDIT2 and PCDTBT, which are derivatives without B and NDI acceptor units, respectively. These two polymers show dominant n- and p-channel behavior in organic field-effect transistors. The TBT moiety clearly dominates the electronic structure of PNDITBT, although less so than in PCDTBT. Furthermore, the triplet exciton most probably delocalizes along the backbone, exhibits a highly homogeneous environment, and planarizes the polymer backbone. Obtaining the zero-field splitting tensors of these triplet states by means of quantum-chemical calculations reveals the triplet energy sublevel associated with the molecular axis parallel to the backbone to be preferentially populated, while the one perpendicular to the aromatic plane is not populated at all, consistent with the spin-density distribution. PNDITBT consisting of two acceptors (NDI and B) has a complex electronic structure, as evident from the two charge-transfer bands in its absorption spectrum. TREPR spectroscopy provides a detailed insight on a molecular level not available by and complementing other methods.

4.
Phys Chem Chem Phys ; 20(4): 2716-2723, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29319714

RESUMO

The high-mobility n-type donor/acceptor polymer PNDIT2 is well-known to form aggregates in solution depending on the solvent used. To gain additional insight into this process, we probed the local environment of triplet excitons in two different solvents and with two different polymer chain lengths using time-resolved electron paramagnetic resonance (TREPR) spectroscopy. Results clearly show aggregation to introduce a high degree of local order in the polymer and to dramatically enhance the delocalisation of the exciton. Furthermore, triplet exciton delocalisation is only affected by the solvent used and hence by aggregate formation, not by chain length. Finally, aggregation changes the mode of delocalisation from intrachain to interchain when forming aggregates, the latter mode dominating as well in thin films. Taken together, TREPR proves to be a valuable tool for investigating aggregation and order in polymers on a molecular length-scale, ideally complementing preceding optical data.

5.
J Am Chem Soc ; 137(20): 6705-11, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25945509

RESUMO

A highly efficient, simple, and environmentally friendly protocol for the synthesis of an alternating naphthalene diimide bithiophene copolymer (PNDIT2) via direct arylation polycondensation (DAP) is presented. High molecular weight (MW) PNDIT2 can be obtained in quantitative yield using aromatic solvents. Most critical is the suppression of two major termination reactions of NDIBr end groups: nucleophilic substitution and solvent end-capping by aromatic solvents via C-H activation. In situ solvent end-capping can be used to control MW by varying monomer concentration, whereby end-capping is efficient and MW is low for low concentration and vice versa. Reducing C-H reactivity of the solvent at optimized conditions further increases MW. Chain perfection of PNDIT2 is demonstrated in detail by NMR spectroscopy, which reveals PNDIT2 chains to be fully linear and alternating. This is further confirmed by investigating the optical and thermal properties as a function of MW, which saturate at Mn ≈ 20 kDa, in agreement with controls made by Stille coupling. Field-effect transistor (FET) electron mobilities µsat up to 3 cm(2)/(V·s) are measured using off-center spin-coating, with FET devices made from DAP PNDIT2 exhibiting better reproducibility compared to Stille controls.

6.
J Org Chem ; 80(2): 980-7, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25521835

RESUMO

Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N'-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor­acceptor­donor building blocks to be further used for the preparation of a variety of conjugated materials.


Assuntos
Acetamidas/química , Benzotiazóis/química , Brometos/química , Fluorbenzenos/química , Furanos/química , Naftalenos/química , Tiofenos/química , Alquilação , Elétrons , Ligação de Hidrogênio , Estrutura Molecular
7.
Macromol Rapid Commun ; 36(2): 231-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25333795

RESUMO

Direct arylation (DA) of 2-chlorothiophene and 2-chloro-3-hexylthiophene with 4,7-dibromo-2,1,3-benzothiadiazole is used to synthesize 4,7-bis(5-chloro-2-thienyl)-2,1,3-benzothiadiazole (TBTCl2) and 4,7-bis(5-chloro-4-hexyl-2-thienyl)-2,1,3-benzothiadiazole (DH-TBTCl2) in one step. Suitable conditions of the Suzuki polycondensations (SPC) of TBTCl2 and DH-TBTCl2 with the carbazole comonomer CbzPBE2 are established, furnishing PCDTBT and P(Cbz-alt-TBT) with high molecular weight and yield. Compared with control samples made from the corresponding dibromides, high-temperature NMR and UV-vis spectroscopy indicate similar properties for PCDTBT but an increased content of Cbz-Cbz homocouplings for P(Cbz-alt-TBT).


Assuntos
Cloretos/química , Hidrocarbonetos Aromáticos/química , Polimerização , Tiadiazóis/química , Carbazóis/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Espectrofotometria , Tiadiazóis/síntese química , Tiofenos/química
8.
ACS Appl Mater Interfaces ; 16(5): 6301-6314, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265883

RESUMO

Lithium-sulfur (Li-S) batteries hold a promising position as candidates for next-generation high-energy storage systems. Here, we combine inverse vulcanization of sulfur with multiwalled carbon nanotubes (MWCNTs) to increase the conductivity of cathode materials for Li-S batteries. The mixing process of inversely vulcanized sulfur copolymer networks with MWCNTs is aided by shear in a two-roll mill to take advantage of the soft nature of the copolymer. The high-throughput mixing method demands a source of conductive carbon that can be intimately mixed with the S copolymer, rendering MWCNTs an excellent choice for this purpose. The resulting sulfur copolymer network-MWCNTs composites were thoroughly characterized in terms of structure, chemical composition, thermal, and electronic transport properties, and finally evaluated by electrochemical benchmarking. These promising hybrids yielded electrodes with high sulfur content and demonstrate stable electrochemical performance exhibiting a specific capacity of ca. 550 mAh·gsulfur-1 (380 mAh·gelectrode-1) even after 500 charge-discharge cycles at specific current of 167 mA·g-1 (corresponds to 0.1C discharge rate), and thus are superior to melt-infiltrated reference samples.

9.
Chem Asian J ; 14(10): 1651-1656, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548395

RESUMO

Thiophene-annulated naphthalene diimide (NTI)-based molecules have recently emerged as an important class of n-type electronic materials. However, their synthesis has predominantly been achieved by Stille or Suzuki coupling reactions despite the presence of a potential C-H bond in NTI. Additionally, the synthesis of NTI or more generally mono-functionalization of naphthalene diimide (NDI) starts with a cumbersome bromination that results in a low yield, is unselective, and requires tedious purification. We herein thus address these issues via a two-step C-H activation: a rhodium-catalyzed direct C-H iodinization is first presented for NDI, followed by establishing an efficient direct arylation protocol for NTI with high yield and robustness. Coupling of up to four NTI units on a benzene or pyrene core is demonstrated along with other aryl bromide substrates. All the herein reported NTI-based small molecules showed n-type semiconductor behavior under air.

10.
J Phys Chem Lett ; 9(24): 7026-7031, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30485108

RESUMO

Delocalization of excited states of organic semiconductors is directly related to their efficiency in devices. Time-resolved electron paramagnetic resonance spectroscopy provides unique capabilities in this respect because of its high spectral resolution and capability to probe the geometry and extent of excitons. Using magnetophotoselection experiments, the mode of exciton delocalization, along the backbone or parallel to the π-π stacking direction of the conjugated polymers, can be revealed. We demonstrate the robustness of this approach by applying it to building blocks of a prototypical conjugated polymer showing a symmetry of their excited states being far from ideal for this experiment. This renders magnetophotoselection superior to other approaches because it is applicable to a wealth of other organic semiconductors. The insight gained into exciton delocalization is crucial to the structure-function relationship of organic semiconductors and directly relevant for developing highly efficient materials.

11.
ACS Appl Mater Interfaces ; 10(1): 955-969, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29206027

RESUMO

Here, we systematically study the effect of fluorination on the performance of all-polymer solar cells by employing a naphthalene diimide (NDI)-based polymer acceptor with thiophene-flanked phenyl co-monomer. Fluorination of the phenyl co-monomer with either two or four fluorine units is used to create a series of acceptor polymers with either no fluorination (PNDITPhT), bifluorination (PNDITF2T), or tetrafluorination (PNDITF4T). In blends with the donor polymer PTB7-Th, fluorination results in an increase in power conversion efficiency from 3.1 to 4.6% despite a decrease in open-circuit voltage from 0.86 V (unfluorinated) to 0.78 V (tetrafluorinated). Countering this decrease in open-circuit voltage is an increase in short-circuit current from 7.7 to 11.7 mA/cm2 as well as an increase in fill factor from 0.45 to 0.53. The origin of the improvement in performance with fluorination is explored using a combination of morphological, photophysical, and charge-transport studies. Interestingly, fluorination is found not to affect the ultrafast charge-generation kinetics, but instead is found to improve charge-collection yield subsequent to charge generation, linked to improved electron mobility and improved phase separation. Fluorination also leads to improved light absorption, with the blue-shifted absorption profile of the fluorinated polymers complementing the absorption profile of the low-band gap PTB7-Th.

12.
Chem Mater ; 29(13): 5473-5483, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28890605

RESUMO

The synthesis, characterization, and charge transport performance of novel copolymers PNDIFu2 made from alternating naphthalene diimide (NDI) and bifuran (Fu2) units are reported. Usage of potentially biomass-derived Fu2 as alternating repeat unit enables flattened polymer backbones due to reduced steric interactions between the imide oxygens and Fu2 units, as seen by density functional theory (DFT) calculations and UV-vis spectroscopy. Aggregation of PNDIFu2 in solution is enhanced if compared to the analogous NDI-bithiophene (T2) copolymers PNDIT2, occurring in all solvents and temperatures probed. PNDIFu2 features a smaller π-π stacking distance of 0.35 nm compared to 0.39 nm seen for PNDIT2. Alignment of aggregates in films is achieved by using off-center spin coating, whereby PNDIFu2 exhibits a stronger dichroic ratio and transport anisotropy in field-effect transistors (FET) compared to PNDIT2, with an overall good electron mobility of 0.21 cm2/(V s). Despite an enhanced backbone planarity, the smaller π-π stacking and the enhanced charge transport anisotropy, the electron mobility of PNDIFu2 is about three times lower compared to PNDIT2. Density functional theory calculations suggest that charge transport in PNDIFu2 is limited by enhanced polaron localization compared to PNDIT2.

13.
ACS Macro Lett ; 4(12): 1346-1350, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35614780

RESUMO

The solvent for direct arylation polycondensation (DAP) is of crucial importance. For conjugated polymers exhibiting reduced solubility, the choice of solvent decides on the maximum molecular weight that can be achieved, hence, good aromatic solvents are generally desirable. However, unintentional activation of C-H bonds present in aromatic solvents under DAP conditions leads to in situ solvent termination which competes with step growth. Here we evaluate relative C-H reactivity and solvent quality of seven aromatic solvents for the DAP of defect-free naphthalene diimide (NDI)-based copolymers of different solubility. C-H reactivity is strongly reduced with increasing degree of substitution for both chlorine and methyl substituents. Mesitylene is largely C-H unreactive and, thus, albeit being a moderate solvent, enables very high molecular weights at elevated temperature for NDI copolymers with limited solubility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA