Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
Cell ; 149(6): 1327-38, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682252

RESUMO

The Drosophila fruitless (fru) gene encodes a set of putative transcription factors that promote male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. However, the mechanism whereby fru establishes the sexual fate of neurons remains enigmatic. Here, we show that Fru forms a complex with the transcriptional cofactor Bonus (Bon), which, in turn, recruits either of two chromatin regulators, Histone deacetylase 1 (HDAC1), which masculinizes individual sexually dimorphic neurons, or Heterochromatin protein 1a (HP1a), which demasculinizes them. Manipulations of HDAC1 or HP1a expression change the proportion of male-typical neurons and female-typical neurons rather than producing neurons with intersexual characteristics, indicating that on a single neuron level, this sexual switch operates in an all-or-none manner.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Histona Desacetilase 1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Fatores de Transcrição/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Histona Desacetilase 1/genética , Masculino , Comportamento Sexual Animal , Transcrição Gênica
2.
Biomacromolecules ; 25(5): 2973-2979, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38588330

RESUMO

Polyhydroxyalkanoate (PHA) synthases (PhaCs) are useful and versatile tools for the production of aliphatic polyesters. Here, the chimeric PHA synthase PhaCAR was engineered to increase its capacity to incorporate unusual 6-hydroxyhexanoate (6HHx) units. Mutations at positions 149 and 314 in PhaCAR were previously found to increase the incorporation of an analogous natural monomer, 3-hydroxyhexanoate (3HHx). We attempted to repurpose the mutations to produce 6HHx-containing polymers. Site-directed saturation mutants at these positions were applied for P(3HB-co-6HHx) synthesis in Escherichia coli. As a result, the N149D and F314Y mutants effectively increased the 6HHx fraction. Moreover, the pairwise NDFY mutation further increased the 6HHx fraction, which reached 22 mol %. This increase was presumably caused by altered enzyme activity rather than altered expression levels, as assessed based on immunoblot analysis. The glass transition temperature and crystallinity of P(3HB-co-6HHx) decreased as the 6HHx fraction increased.


Assuntos
Aciltransferases , Caproatos , Escherichia coli , Aciltransferases/genética , Aciltransferases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Caproatos/química , Caproatos/metabolismo , Engenharia de Proteínas/métodos , Poliésteres/química , Poliésteres/metabolismo , Mutagênese Sítio-Dirigida , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
3.
Appl Microbiol Biotechnol ; 108(1): 164, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252290

RESUMO

The microbial production of polyhydroxyalkanoate (PHA) block copolymers has attracted research interests because they can be expected to exhibit excellent physical properties. Although post-polymerization conjugation and/or extension have been used for PHA block copolymer synthesis, the discovery of the first sequence-regulating PHA synthase, PhaCAR, enabled the direct synthesis of PHA-PHA type block copolymers in microbial cells. PhaCAR spontaneously synthesizes block copolymers from a mixture of substrates. To date, Escherichia coli and Ralstonia eutropha have been used as host strains, and therefore, sequence regulation is not a host-specific phenomenon. The monomer sequence greatly influences the physical properties of the polymer. For example, a random copolymer of 3-hydroxybutyrate and 2-hydroxybutyrate deforms plastically, while a block copolymer of approximately the same composition exhibits elastic deformation. The structure of the PHA block copolymer can be expanded by in vitro evolution of the sequence-regulating PHA synthase. An engineered variant of PhaCAR can synthesize poly(D-lactate) as a block copolymer component, which allows for greater flexibility in the molecular design of block copolymers. Therefore, creating sequence-regulating PHA synthases with a further broadened substrate range will expand the variety of properties of PHA materials. This review summarizes and discusses the sequence-regulating PHA synthase, analytical methods for verifying block sequence, properties of block copolymers, and mechanisms of sequence regulation. KEY POINTS: • Spontaneous monomer sequence regulation generates block copolymers • Poly(D-lactate) segment can be synthesized using a block copolymerization system • Block copolymers exhibit characteristic properties.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Ácido Láctico , Ácido 3-Hidroxibutírico , Cupriavidus necator/genética , Escherichia coli/genética
4.
Eur Arch Otorhinolaryngol ; 281(4): 1701-1708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37804352

RESUMO

PURPOSE: When a dizzy patient with episodic vertigo has an abnormal caloric and a normal video head impulse test (vHIT), this caloric-vHIT dissociation provides vital information for a diagnosis of Ménière's disease (MD). Endolymphatic hydrops (EH), a histological marker of MD, is hypothesized to be involved in the caloric-vHIT dissociation in MD through hydropic duct distension of the horizontal semicircular canal (SC). This study was designed to determine the impact of EH on the function of horizontal SC during caloric stimulation. METHODS: Caloric test and vHIT were used to evaluate the function of horizontal SC every six months, annual magnetic resonance imaging (MRI) was used to evaluate the degree of EH size in the vestibule, and monthly vertigo and hearing evaluation was done for 12 months. EH shrinkage was defined as the size change of vestibular EH from significant to none. RESULTS: Among 133 MD patients evaluated for eligibility, 67 patients with caloric-vHIT dissociation entered the study. Fifteen participants had EH shrinkage (G-I), while 52 participants had no remarkable EH change (G-II). Average values (IQR) of the maximum slow phase velocity in G-I and G-II were 29.6 (13.0-34.0) and 25.9 (17.3-31.3), respectively, at baseline, 26.1 (9.0-38.0) and 23.6 (18.0-28.3) at 12 months. Two-factor repeated-measures ANOVA showed no significant differences between the groups (P = 0.486). The values of vestibulo-ocular reflex gain of the horizontal SC in G-I and G-II remained above 0.8 during the study period. CONCLUSIONS: EH detected by MRI shows limited correlation with caloric stimulation results.


Assuntos
Hidropisia Endolinfática , Doença de Meniere , Vestíbulo do Labirinto , Humanos , Doença de Meniere/complicações , Doença de Meniere/diagnóstico , Hidropisia Endolinfática/diagnóstico por imagem , Canais Semicirculares/diagnóstico por imagem , Vertigem , Testes Calóricos , Teste do Impulso da Cabeça/métodos , Imageamento por Ressonância Magnética/métodos
5.
Cancer Sci ; 114(4): 1663-1671, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36601784

RESUMO

To meet cellular bioenergetic and biosynthetic demands, cancer cells remodel their metabolism to increase glycolytic flux, a phenomenon known as the Warburg effect and believed to contribute to cancer malignancy. Among glycolytic enzymes, phosphofructokinase-1 (PFK1) has been shown to act as a rate-limiting enzyme and to facilitate the Warburg effect in cancer cells. In this study, however, we found that decreased PFK1 activity did not affect cell survival or proliferation in cancer cells. This raised a question regarding the importance of PFK1 in malignancy. To gain insights into the role of PFK1 in cancer metabolism and the possibility of adopting it as a novel anticancer therapeutic target, we screened for genes that caused lethality when they were knocked down in the presence of tryptolinamide (TLAM), a PFK1 inhibitor. The screen revealed a synthetic chemical-genetic interaction between genes encoding subunits of ATP synthase (complex V) and TLAM. Indeed, after TLAM treatment, the sensitivity of HeLa cells to oligomycin A (OMA), an ATP synthase inhibitor, was 13,000 times higher than that of untreated cells. Furthermore, this sensitivity potentiation by TLAM treatment was recapitulated by genetic mutations of PFK1. By contrast, TLAM did not potentiate the sensitivity of normal fibroblast cell lines to OMA, possibly due to their reduced energy demands compared to cancer cells. We also showed that the PFK1-mediated glycolytic pathway can act as an energy reservoir. Selective potentiation of the efficacy of ATP synthase inhibitors by PFK1 inhibition may serve as a foundation for novel anticancer therapeutic strategies.


Assuntos
Adenosina Trifosfatases , Detecção Precoce de Câncer , Neoplasias , Fosfofrutoquinase-1 , Humanos , Glicólise/genética , Células HeLa , Neoplasias/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Interferência de RNA , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo
6.
Appl Microbiol Biotechnol ; 107(24): 7557-7569, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37773219

RESUMO

Bacterial polyhydroxyalkanoates (PHAs) are promising bio-based biodegradable polyesters. It was recently reported that novel PHA block copolymers composed of (R)-3-hydroxybutyrate (3HB) and (R)-2-hydroxybutyrate (2HB) were synthesized by Escherichia coli expressing PhaCAR, a chimeric enzyme of PHA synthases derived from Aeromonas caviae and Ralstonia eutropha. In this study, the sequence-regulating PhaCAR was applied in the natural PHA-producing bacterium, R. eutropha. During the investigation, (R/S)-2HB was found to exhibit strong growth inhibitory effects on the cells of R. eutropha. This was probably due to formation of excess 2-ketobutyrate (2KB) from (R/S)-2HB and the consequent L-valine depletion caused by dominant L-isoleucine synthesis attributed to the excess 2KB. Deletion analyses for genes of lactate dehydrogenase homologs identified cytochrome-dependent D-lactate dehydrogenase (Dld) and [Fe-S] protein-dependent L-lactate dehydrogenase as the enzymes responsible for sensitivity to (R)-2HB and (S)-2HB, respectively. The engineered R. eutropha strain (phaCAR+, ldhACd-hadACd+ encoding clostridial (R)-2-hydroxyisocaproate dehydrogenase and (R)-2-hydoroxyisocaproate CoA transferase, ∆dld) synthesized PHA containing 10 mol% of 2HB when cultivated on glucose with addition of sodium (RS)-2HB, and the 2HB composition in PHA increased up to 35 mol% by overexpression phaCAR. The solvent fractionation and NMR analyses showed that the resulting PHAs were most likely to be block polymers consisting of P(3HB-co-3HV) and P(2HB) segments, suggesting that PhaCAR functions as the sequence-regulating PHA synthase independently from genetic and metabolic backgrounds of the host cell. KEY POINTS: (R/S)-2-hydroxubutyrates (2HB) caused l-valine deletion in Ralstonia eutropha (R)- and (S)-lactate/2HB dehydrogenases functional in R. eutropha were identified The engineered R. eutropha synthesized block copolymers of 2HB-containing polyhydroxyalkanoates on glucose and 2HB.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Cupriavidus necator/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenases/metabolismo , Cádmio/metabolismo , Hidroxibutiratos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Poliésteres/metabolismo , Escherichia coli/metabolismo , Valina/metabolismo , Lactatos/metabolismo , Glucose/metabolismo
7.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674861

RESUMO

Breast carcinoma is the most prevalent cancer in women globally, with complex genetic and molecular mechanisms that underlie its development and progression. Several challenges such as metastasis and drug resistance limit the prognosis of breast cancer, and hence a constant search for better treatment regimes, including novel molecular therapeutic targets is necessary. Complement component 1, q subcomponent binding protein (C1QBP), a promising molecular target, has been implicated in breast carcinogenesis. In this study, the role of C1QBP in breast cancer progression, in particular cancer cell growth, was determined in triple negative MDA-MB-231 breast cancer cells. Depletion of C1QBP decreased cell proliferation, whereas the opposite effect was observed when C1QBP was overexpressed in MDA-MB-231 cells. Furthermore, gene expression profiling and pathway analysis in C1QBP depleted cells revealed that C1QBP regulates several signaling pathways crucial for cell growth and survival. Taken together, these findings provide a deeper comprehension of the role of C1QBP in triple negative breast cancer, and could possibly pave the way for future advancement of C1QBP-targeted breast cancer therapy.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/genética
8.
J Clin Biochem Nutr ; 72(2): 107-116, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36936873

RESUMO

The impact of radiation-induced hydrogen peroxide (H2O2) on the biological effects of X-rays and carbon-ion beams was investigated using a selenium-deficient (SeD) mouse model. Selenium is the active center of glutathione peroxidase (GSH-Px), and SeD mice lack the ability to degrade H2O2. Male and female SeD mice were prepared by feeding a torula yeast-based SeD diet and ultrapure water. Thirty-day survival rates after whole-body irradiation, radiation-induced leg contracture, and MRI-based redox imaging of the brain were assessed and compared between SeD and normal mice. Thirty-day lethality after whole-body 5.6 Gy irradiation with X-rays or carbon-ion beams was higher in the SeD mice than in the normal mice, while SeD did not give the notable difference between X-rays and carbon-ion beams. SeD also did not affect the maximum leg contracture level after irradiation with carbon-ion beams, but delayed the leg contraction rate. In addition, no marked effects of SeD were observed on variations in the redox status of the brain after irradiation. Collectively, the present results indicate that SeD slightly altered the biological effects of X-rays and/or carbon-ion beams. GSH-Px processes endogenous H2O2 generated through mitochondrial respiration, but does not have the capacity to degrade H2O2 produced by irradiation.

9.
Chembiochem ; 23(7): e202100561, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34813140

RESUMO

The step of identifying target molecules and elucidating the mode of action of bioactive compounds is a major bottleneck for drug discovery from phenotypic screening. Genetic screening for genes that affect drug sensitivity or phenotypes of mammalian cultured cells is a powerful tool to obtain clues to their modes of action. Chemical genomic screening systems for comprehensively identifying such genes or genetic pathways have been established using shRNA libraries for RNA interference-mediated mRNA knockdown or sgRNA libraries for CRISPR/Cas9-mediated gene knockout. The combination of chemical genomic screening in mammalian cells with other approaches such as biochemical searches for target molecules, phenotypic profiling, and yeast genetics provides a systematic way to elucidate the mode of action by converging various pieces of information regarding target molecules, target pathways, and synthetic lethal pathways.


Assuntos
Descoberta de Drogas , Genômica , Animais , Linhagem Celular , Mamíferos , Fenótipo
10.
Biomacromolecules ; 23(3): 1221-1231, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34991313

RESUMO

Sequence-regulating polyhydroxyalkanoate synthase PhaCAR is a chimeric enzyme comprising PhaCs from Aeromonas caviae and Ralstonia eutropha (Cupriavidus necator). It spontaneously synthesizes a short-chain-length (SCL, ≤C5) block copolymer poly(2-hydroxybutyrate)-b-poly(3-hydroxybutyrate) [P(2HB)-b-P(3HB)] from a mixture of monomer substrates. In this study, directed evolution of PhaCAR was performed to increase its activity toward a medium-chain-length (MCL, C6-12) monomer, 3-hydroxyhexanoyl (3HHx)-coenzyme A (CoA). Random mutagenesis and selection based on P(3HB-co-3HHx) production in Escherichia coli found that beneficial mutations N149D and F314L increase the 3HHx fraction. The site-directed saturation mutagenesis at position 314, which is adjacent to the catalytic center C315, demonstrated that F314H synthesizes the P(3HHx) homopolymer. The F314H mutant exhibited increased activity toward 3HHx-CoA compared with the parent enzyme, whereas the activity toward 3HB-CoA decreased. The predicted tertiary structure of PhaCAR by AlphaFold2 provided insight into the mechanism of the beneficial mutations. In addition, this finding enabled the synthesis of a new PHA block copolymer, P(3HHx)-b-P(2HB). Solvent fractionation indicated the presence of a covalent linkage between the polymer segments. This novel MCL-SCL block copolymer considerably expands the range of the molecular design of PHA block copolymers.


Assuntos
Cupriavidus necator , Aciltransferases/genética , Coenzima A , Meios de Cultura , Cupriavidus necator/genética , Escherichia coli/genética , Polímeros
11.
Microb Cell Fact ; 21(1): 84, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568875

RESUMO

BACKGROUND: Polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized by PHA synthases. Naturally occurring PHA copolymers possess a random monomer sequence. The development of PhaCAR, a unique sequence-regulating PHA synthase, has enabled the spontaneous biosynthesis of PHA block copolymers. PhaCAR synthesizes both a block copolymer poly(2-hydroxybutyrate)-b-poly(3-hydroxybutyrate) [P(2HB)-b-P(3HB)], and a random copolymer, poly(3HB-co-3-hydroxyhexanoate), indicating that the combination of monomers determines the monomer sequence. Therefore, in this study, we explored the substrate scope of PhaCAR and the monomer sequences of the resulting copolymers to identify the determinants of the monomer sequence. PhaCAR is a class I PHA synthase that is thought to incorporate long-main-chain hydroxyalkanoates (LMC HAs, > C3 in the main [backbone] chain). Thus, the LMC monomers, 4-hydroxy-2-methylbutyrate (4H2MB), 5-hydroxyvalerate (5HV), and 6-hydroxyhexanoate (6HHx), as well as 2HB, 3HB, and 3-hydroxypropionate (3HP) were tested. RESULTS: Recombinant Escherichia coli harboring PhaCAR, CoA transferase and CoA ligase genes was used for PHA production. The medium contained the monomer precursors, 2HB, 3HB, 3HP, 4H2MB, 5HV, and 6HHx, either individually or in combination. As a result, homopolymers were obtained only for 3HB and 3HP. Moreover, 3HB and 3HP were randomly copolymerized by PhaCAR. 3HB-based binary copolymers P(3HB-co-LMC HA)s containing up to 2.9 mol% 4H2MB, 4.8 mol% 5HV, or 1.8 mol% 6HHx were produced. Differential scanning calorimetry analysis of the copolymers indicated that P(3HB-co-LMC HA)s had a random sequence. In contrast, combining 3HP and 2HB induced the synthesis of P(3HP)-b-P(2HB). Similarly, P(2HB) segment-containing block copolymers P(3HB-co-LMC HA)-b-P(2HB)s were synthesized. Binary copolymers of LMC HAs and 2HB were not obtained, indicating that the 3HB or 3HP unit is essential to the polymer synthesis. CONCLUSION: PhaCAR possesses a wide substrate scope towards 2-, 3-, 4-, 5-, and 6-hydroxyalkanoates. 3HB or 3HP units are essential for polymer synthesis using PhaCAR. The presence of a 2HB monomer is key to synthesizing block copolymers, such as P(3HP)-b-P(2HB) and P(3HB-co-LMC HA)-b-P(2HB)s. The copolymers that did not contain 2HB units had a random sequence. This study's results provide insights into the mechanism of sequence regulation by PhaCAR and pave the way for designing PHA block copolymers.


Assuntos
Poliésteres , Poli-Hidroxialcanoatos , Ácido 3-Hidroxibutírico , Aciltransferases/genética , Escherichia coli/genética
12.
Biosci Biotechnol Biochem ; 86(2): 217-223, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34788370

RESUMO

Chimeric polyhydroxyalkanoate synthase PhaCAR is characterized by the capacity to incorporate unusual glycolate (GL) units and spontaneously synthesize block copolymers. The GL and 3-hydroxybutyrate (3HB) copolymer synthesized by PhaCAR is a random-homo block copolymer, poly(GL-ran-3HB)-b-poly(3HB). In the present study, medium-chain-length 3-hydroxyhexanoate (3HHx) units were incorporated into this copolymer using PhaCAR for the first time. The coenzyme A (CoA) ligase from Pseudomonas oleovorans (AlkK) serves as a simple 3HHx-CoA supplying route in Escherichia coli from exogenously supplemented 3HHx. NMR analyses of the obtained polymers revealed that 3HHx units were randomly connected to 3HB units, whereas GL units were heterogeneously distributed. Therefore, the polymer is composed of 2 segments: P(3HB-co-3HHx) and P(GL-co-3HB-co-3HHx). The thermal and mechanical properties of the terpolymer indicate no contiguous P(3HB) segments in the material, consistent with the NMR results. Therefore, PhaCAR synthesized the novel block copolymer P(3HB-co-3HHx)-b-P(GL-co-3HB-co-3HHx), which is the first block polyhydroxyalkanoate copolymer comprising 2 copolymer segments.


Assuntos
Caproatos
13.
Acta Med Okayama ; 76(5): 609-615, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36352810

RESUMO

A 69-year-old Japanese man with acute leukemia received post-transplant cyclophosphamide-based haploidentical stem cell transplantation (PTCY-haplo-SCT) but was readmitted with dyspnea and ground-glass-opacities of the lungs. Bronchoscopy showed inflammatory changes with no signs of infection. He received steroids but required intubation as his condition deteriorated. In addition to antithymocyte globulin and cyclophosphamide, we administered ruxolitinib but failed to save him. Autopsy findings revealed fibrotic nonspecific interstitial pneumonia (NSIP) without evidence of organizing pneumonia or infection. Thus, we diagnosed idiopathic pneumonia syndrome (IPS). As far as our knowledge, this is the first case of IPS with NSIP histology after PTCY-haplo-SCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Pneumonia , Humanos , Masculino , Idoso , Autopsia , Ciclofosfamida/uso terapêutico , Condicionamento Pré-Transplante , Pulmão , Estudos Retrospectivos
14.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614115

RESUMO

Alzheimer's disease (AD) is a common dementia disease in the elderly. To get a better understanding of the pathophysiology, we performed a proteomic analysis of the urine exosomes (U-exo) in AD model mice (J20). The polymer precipitation method was used to isolate U-exo from the urine of 3-month-old J20 and wild-type (WT) mice. Neuron-derived exosome (N-exo) was isolated from U-exo by immunoprecipitation. iTRAQ-based MALDI TOF MS/MS was used for proteomic analysis. The results showed that compared to WT, the levels of 61 and 92 proteins were increased in the J20 U-exo and N-exo, respectively. Gene ontology enrichment analysis demonstrated that the sphingolipid catabolic process, ceramide catabolic process, membrane lipid catabolic process, Aß clearance, and Aß metabolic process were highly enriched in U-exo and N-exo. Among these, Asah1 was shown to be the key protein in lipid metabolism, and clusterin, ApoE, neprilysin, and ACE were related to Aß metabolism and clearance. Furthermore, protein-protein interaction analysis identified four protein complexes where clusterin and ApoE participated as partner proteins. Thus, J20 U-exo and N-exo contain proteins related to lipid- and Aß-metabolism in the early stages of AD, providing a new insight into the underlying pathological mechanism of early AD.


Assuntos
Doença de Alzheimer , Exossomos , Camundongos , Animais , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Clusterina/metabolismo , Exossomos/metabolismo , Espectrometria de Massas em Tandem , Proteômica , Doença de Alzheimer/metabolismo , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo
15.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163857

RESUMO

The linear-density (number of molecules on an arbitrary distance) of X-ray-induced markedly dense hydroxyl radicals (•OH) in water was estimated based on EPR spin-trapping measurement. A lower (0.13 mM-2.3 M) concentration series of DMPO water solutions and higher (1.7-6.0 M) concentration series of DMPO water solutions plus neat DMPO liquid (8.8 M as DMPO) were irradiated with 32 Gy of X-rays. Then, the yield of DMPO-OH in DMPO water solutions and the total spin-adduct of DMPO in neat DMPO were quantified. For the higher concentration DMPO series, the EPR peak area was estimated by double integration, and the baseline correction of the integral spectrum is necessary for accurate estimation of the peak area. The preparation of a suitable standard sample corresponding to the electric permittivity according to DMPO concentration was quite important for quantification of DMPO-OH, especially in DMPO concentration beyond 2 M. The linear-density of •OH generation in water by X-ray irradiation was estimated from the inflection point on the plot of the DMPO-OH yield versus DMPO linear-density. The linear-density of X-ray-induced markedly dense •OH was estimated as 1168 µm-1, which was converted to 0.86 nm as the intermolecular distance and 2.6 M as the local concentration.

16.
J Clin Biochem Nutr ; 70(3): 213-221, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35692674

RESUMO

The quantitative measurement of free radicals in liquid using an X-band electron paramagnetic resonance (EPR) was systematized. Quantification of free radicals by EPR requires a standard sample that contains a known spin amount/concentration. When satisfactory reproducibility of the sample material, volume, shape, and positioning in the cavity for EPR measurements can be guaranteed, a sample tested and a standard can be directly compared and the process of quantification can be simplified. The purpose of this study was to simplify manual quantitative EPR measurement. A suitable sample volume for achieving a stable EPR intensity was estimated. The effects of different solvents on the EPR sensitivity were compared. The stability and reproducibility of the EPR intensity of standard nitroxyl radical solutions were compared among different types of sample tubes. When the sample tubes, sample volumes, and/or solvents were the same, the EPR intensity was reproduced with an error of 2% or less for µM samples. The quantified sample and the standard sample in the same solvent and the same volume drawn into the same sample tube was able to be directly compared. The standard sample for quantification should be measured just before or after every daily experiment.

17.
Lab Invest ; 101(6): 690-700, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782532

RESUMO

The purpose of the study was to uncover the role of tenascin X in modulation of healing in mouse corneas subjected to epithelium debridement. Healing in corneas with an epithelial defect was evaluated at the levels of gene and protein expression. Wound healing-related mediators and inflammatory cell infiltration were detected by histology, immunohistochemistry and real-time RT-PCR. Tenascin X protein was upregulated in the wounded wild-type (WT) corneal epithelium. The lack of tenascin X impaired closure of an epithelial defect and accelerated infiltration of neutrophils into the wound periphery as compared to the response in WT tissue. Expression of wound healing-related proinflammatory and reparative components, i.e., interleukin-6, transforming growth factor ß, matrix metalloproteinases, were unaffected by the loss of tenascin X expression. Marked accumulation of malondialdehyde (a lipid peroxidation-derived product) was observed in KO healing epithelia as compared with its WT counterpart. Neutropenia induced by systemic administration of a specific antibody rescued the impairment of epithelial healing in KO corneas, with reduction of malondialdehyde levels in the epithelial cells. Finally, we showed that a chemical scavenging reactive oxygen species reversed the impairment of attenuation of epithelial repair with a reduction of tissue levels of malondialdehyde. In conclusion, loss of tenascin X prolonged corneal epithelial wound healing and increased neutrophilic inflammatory response to debridement in mice. Tenascin X contributes to the control of neutrophil infiltration needed to support the regenerative response to injury and prevent the oxidative stress mediators from rising to cytotoxic levels.


Assuntos
Córnea/imunologia , Infiltração de Neutrófilos , Espécies Reativas de Oxigênio/metabolismo , Tenascina/fisiologia , Cicatrização/imunologia , Animais , Córnea/metabolismo , Camundongos Knockout
18.
Arch Biochem Biophys ; 705: 108901, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964248

RESUMO

Recent developments in electronics have enabled the medical applications of non-thermal plasma (NTP), which elicits reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydroxyl radical (●OH), hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide (O2●-), ozone, and nitric oxide at near-physiological temperatures. In preclinical studies or human clinical trials, NTP promotes blood coagulation, eradication of bacterial, viral and biofilm-related infections, wound healing, and cancer cell death. To elucidate the solution-phase biological effects of NTP in the presence of biocompatible reducing agents, we employed electron paramagnetic resonance (EPR) spectroscopy to quantify ●OH using a spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO); 1O2 using a fluorescent probe; and O2●- and H2O2 using luminescent probes in the presence of thiols or tempol. NTP-induced ●OH was significantly scavenged by dithiothreitol (DTT), reduced glutathione (GSH), and oxidized glutathione (GSSG) in 2 or 5 mM DMPO. NTP-induced O2●- was significantly scavenged by 10 µM DTT and GSH, while 1O2 was not efficiently scavenged by these compounds. GSSG degraded H2O2 more effectively than GSH and DTT, suggesting that the disulfide bonds reacted with H2O2. In the presence of 1-50 mM DMPO, NTP-induced H2O2 quantities were unchanged. The inhibitory effect of tempol concentration (50 and 100 µM) on H2O2 production was observed in 1 and 10 mM DMPO, whereas it became ineffective in 50 mM DMPO. Furthermore, DMPO-OH did not interact with tempol. These results suggest that DMPO and tempol react competitively with O2●-. Further studies are warranted to elucidate the interaction between NTP-induced ROS and biomolecules.


Assuntos
Óxidos N-Cíclicos/química , Peróxido de Hidrogênio/química , Gases em Plasma/química , Espectroscopia de Ressonância de Spin Eletrônica , Radical Hidroxila/química
19.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799481

RESUMO

Radiation therapy is one of the main modalities to treat cancer/tumor. The response to radiation therapy, however, can be influenced by physiological and/or pathological conditions in the target tissues, especially by the low partial oxygen pressure and altered redox status in cancer/tumor tissues. Visualizing such cancer/tumor patho-physiological microenvironment would be a useful not only for planning radiotherapy but also to detect cancer/tumor in an earlier stage. Tumor hypoxia could be sensed by positron emission tomography (PET), electron paramagnetic resonance (EPR) oxygen mapping, and in vivo dynamic nuclear polarization (DNP) MRI. Tissue oxygenation could be visualized on a real-time basis by blood oxygen level dependent (BOLD) and/or tissue oxygen level dependent (TOLD) MRI signal. EPR imaging (EPRI) and/or T1-weighted MRI techniques can visualize tissue redox status non-invasively based on paramagnetic and diamagnetic conversions of nitroxyl radical contrast agent. 13C-DNP MRI can visualize glycometabolism of tumor/cancer tissues. Accurate co-registration of those multimodal images could make mechanisms of drug and/or relation of resulted biological effects clear. A multimodal instrument, such as PET-MRI, may have another possibility to link multiple functions. Functional imaging techniques individually developed to date have been converged on the concept of theranostics.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/patologia , Tomografia por Emissão de Pósitrons/métodos , Microambiente Tumoral/fisiologia , Animais , Meios de Contraste/química , Humanos , Óxidos de Nitrogênio/química , Oxirredução , Oxigênio/química
20.
J Clin Biochem Nutr ; 68(2): 116-122, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33879962

RESUMO

The effects of reaction environments on the radical-scavenging mechanisms of ascorbic acid (AscH2) were investigated using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) as a reactivity model of reactive oxygen species. Water-insoluble DPPH• was solubilized by ß-cyclodextrin (ß-CD) in water. The DPPH•-scavenging rate of AscH2 in methanol (MeOH) was much slower than that in phosphate buffer (0.05 M, pH 7.0). An organic soluble 5,6-isopropylidene-l-ascorbic acid (iAscH2) scavenged DPPH• much slower in acetonitrile (MeCN) than in MeOH. In MeOH, Mg(ClO4)2 significantly decelerated the DPPH•-scavenging reaction by AscH2 and iAscH2, while no effect of Mg(ClO4)2 was observed in MeCN. On the other hand, Mg(ClO4)2 significantly accelerated the reaction between AscH2 and ß-CD-solubilized DPPH• (DPPH•/ß-CD) in phosphate buffer (0.05 M, pH 6.5), although the addition of 0.05 M Mg(ClO4)2 to the AscH2-DPPH•/ß-CD system in phosphate buffer (0.05 M, pH 7.0) resulted in the change in pH of the phosphate buffer to be 6.5. Thus, the DPPH•-scavenging reaction by iAscH2 in MeCN may proceed via a one-step hydrogen-atom transfer, while an electron-transfer pathway is involved in the reaction between AscH2 and DPPH•/ß-CD in phosphate buffer solution. These results demonstrate that the DPPH•-scavenging mechanism of AscH2 are affected by the reaction environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA