Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544222

RESUMO

Bioluminescence is light produced by organisms through chemical reactions. In most cases, bioluminescent organisms produce light in response to mechanical stimulation, including from shear around objects moving in the water. Many phytoplankton and zooplankton are capable of producing bioluminescence, which is commonly measured as bioluminescence potential, defined as mechanically stimulated light measured inside of a chambered pump-through bathyphotometer. We have developed a numerical model of a pump-through bathyphotometer and simulated flow using Lagrangian particles as an approximation for bioluminescent marine plankton taxa. The results indicate that all particles remain in the detection chamber for a residence time of at least 0.25 s. This suggests that the total first flash of bioluminescent autotrophic and heterotrophic dinoflagellates will be measured based on the existing literature regarding their flash duration. We have found low sensitivity of particle residence time to variations in particle size, density, or measurement depth. In addition, the results show that a high percentage of organisms may experience stimulation well before the detection chamber, or even multiple stimulations within the detection chamber. The results of this work serve to inform the processing of current bioluminescent potential data and assist in the development of future instruments.


Assuntos
Dinoflagellida , Animais , Dinoflagellida/fisiologia , Fitoplâncton , Simulação por Computador , Plâncton , Zooplâncton
2.
Opt Express ; 25(5): 5662-5683, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380824

RESUMO

Small-scale spatial variation in temperature can lead to localized changes in the index of refraction and can distort electro-optical (EO) signal transmission in ocean and atmosphere. This phenomenon is well-studied in the atmosphere, where it is generally called "optical turbulence". Less is known about how turbulent fluctuations in the ocean distort EO signal transmissions, an effect that can impact various underwater applications, from diver visibility to active and passive remote sensing. To provide a test bed for the study of the impacts from turbulent flows on EO signal transmission, and to examine and mitigate turbulence effects, we set up a laboratory turbulence environment allowing the controlled and repeatable variation of turbulence intensity. The laboratory measurements are complemented by high resolution computational fluid dynamics simulations emulating the tank environment. This controlled Simulated Turbulence and Turbidity Environment (SiTTE) can be used to assess optical image degradation in the tank in relation to turbulence intensity, as well as to examine various adaptive optics mitigation techniques.

3.
Appl Opt ; 56(22): 6065-6072, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047796

RESUMO

The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5 m×0.5 m×0.5 m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.

4.
Sci Rep ; 10(1): 2130, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034169

RESUMO

Particle image velocimetry (PIV) is a well-established tool to collect high-resolution velocity and turbulence data in the laboratory, in both air and water. Laboratory experiments are often performed under conditions of constant temperature or salinity or in flows with only small gradients of these properties. At larger temperature or salinity variations, the changes in the index of refraction of water or air due to turbulent microstructure can lead to so-called optical turbulence. We observed a marked influence of optical turbulence on particle imaging in PIV. The effect of index of refraction variations on PIV has been described in air for high Mach number flows, but in such cases the distortion is directional. No such effect has previously been reported for conditions of isotropic optical turbulence in water. We investigated the effect of optical turbulence on PIV imaging in a large Rayleigh-Bénard tank for various path lengths and turbulence strengths. The results show that optical turbulence can significantly affect PIV measurements. Depending on the strength of the optical turbulence and path length, the impact can be mitigated in post-processing, which may reduce noise and recover the mean velocity signal, but leads to the loss of the high-frequency turbulence signal.

5.
Sci Rep ; 6: 19123, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26753514

RESUMO

Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.


Assuntos
Bactérias/metabolismo , Oceanos e Mares , Tensoativos/metabolismo , Florida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA