Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 39(7): 1301-1306, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31242028

RESUMO

Aging has a significant impact not only on every single individual but on society as a whole. Today, people throughout the world exhibit an extended lifespan. Therefore, it becomes increasingly important to develop novel concepts that encourage a modern understanding of the aging process. The concept of healthy aging shifts the perception of aging as a burden towards aging as an opportunity for an extended healthy phase in later life. Morbidity and mortality in the elderly population are greatly defined by a raise in the incidence and prevalence of cardiovascular diseases. Consequently, it is critical to identify risk factors and underlying mechanisms that render the aging (cardio)vascular system prone to disease. In this review, we focus on structural mechanisms of arterial stiffening as a major manifestation of vascular aging and its functional implications for the concept of healthy aging.


Assuntos
Envelhecimento Saudável , Rigidez Vascular , Envelhecimento/fisiologia , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
2.
J Am Heart Assoc ; 13(4): e032641, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38348796

RESUMO

BACKGROUND: Increasing arterial stiffness is a prominent feature of the aging cardiovascular system. Arterial stiffening leads to fundamental alterations in central hemodynamics with widespread detrimental implications for organ function resulting in significant morbidity and death, and specific therapies to address the underlying age-related structural arterial remodeling remain elusive. The present study investigates the potential of the recently clinically available dual angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan (LCZ696) to counteract age-related arterial fibrotic remodeling and stiffening in 1-year-old mice. METHODS AND RESULTS: Treatment of in 1-year-old mice with ARNI (sacubitril/valsartan), in contrast to angiotensin receptor blocker monotherapy (valsartan) and vehicle treatment (controls), significantly decreases structural aortic stiffness (as measured by in vivo pulse-wave velocity and ex vivo aortic pressure myography). This phenomenon appears, at least partly, independent of (indirect) blood pressure effects and may be related to a direct antifibrotic interference with aortic smooth muscle cell collagen production. Furthermore, we find aortic remodeling and destiffening due to ARNI treatment to be associated with improved parameters of cardiac diastolic function in aged mice. CONCLUSIONS: This study provides preclinical mechanistic evidence indicating that ARNI-based interventions may counteract age-related arterial stiffening and may therefore be further investigated as a promising strategy to improve cardiovascular outcomes in the elderly.


Assuntos
Aminobutiratos , Insuficiência Cardíaca , Rigidez Vascular , Humanos , Idoso , Pessoa de Meia-Idade , Camundongos , Animais , Lactente , Neprilisina , Angiotensinas , Tetrazóis/uso terapêutico , Receptores de Angiotensina , Valsartana/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Combinação de Medicamentos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Volume Sistólico
3.
Cardiovasc Res ; 119(3): 867-878, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36413508

RESUMO

AIMS: Abdominal aortic aneurysm (AAA) is a common cardiovascular disease with a strong correlation to smoking, although underlying mechanisms have been minimally explored. Electronic cigarettes (e-cigs) have gained recent broad popularity and can deliver nicotine at comparable levels to tobacco cigarettes, but effects on AAA development are unknown. METHODS AND RESULTS: We evaluated the impact of daily e-cig vaping with nicotine on AAA using two complementary murine models and found that exposure enhanced aneurysm development in both models and genders. E-cigs induced changes in key mediators of AAA development including cytokine chitinase-3-like protein 1 (CHI3L1/Chil1) and its targeting microRNA-24 (miR-24). We show that nicotine triggers inflammatory signalling and reactive oxygen species while modulating miR-24 and CHI3L1/Chil1 in vitro and that Chil1 is crucial to e-cig-augmented aneurysm formation using a knockout model. CONCLUSIONS: In conclusion our work shows increased aneurysm formation along with augmented vascular inflammation in response to e-cig exposure with nicotine. Further, we identify Chil1 as a key mediator in this context. Our data raise concerns regarding the potentially harmful long-term effects of e-cig nicotine vaping.


Assuntos
Aneurisma da Aorta Abdominal , Sistemas Eletrônicos de Liberação de Nicotina , MicroRNAs , Animais , Masculino , Feminino , Camundongos , Nicotina/toxicidade , Fumar , MicroRNAs/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética
4.
J Cell Biol ; 177(1): 63-72, 2007 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-17420290

RESUMO

Steroid receptors regulate gene expression in a ligand-dependent manner by binding specific DNA sequences. Ligand binding also changes the conformation of the ligand binding domain (LBD), allowing interaction with coregulators via LxxLL motifs. Androgen receptors (ARs) preferentially interact with coregulators containing LxxLL-related FxxLF motifs. The AR is regulated at an extra level by interaction of an FQNLF motif in the N-terminal domain with the C-terminal LBD (N/C interaction). Although it is generally recognized that AR coregulator and N/C interactions are essential for transcription regulation, their spatiotemporal organization is largely unknown. We performed simultaneous fluorescence resonance energy transfer and fluorescence redistribution after photobleaching measurements in living cells expressing ARs double tagged with yellow and cyan fluorescent proteins. We provide evidence that AR N/C interactions occur predominantly when ARs are mobile, possibly to prevent unfavorable or untimely cofactor interactions. N/C interactions are largely lost when AR transiently binds to DNA, predominantly in foci partly overlapping transcription sites. AR coregulator interactions occur preferentially when ARs are bound to DNA.


Assuntos
Receptores Androgênicos/análise , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Luminescentes/análise , Mapeamento de Interação de Proteínas , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Proteínas Recombinantes de Fusão/análise
5.
Front Cardiovasc Med ; 8: 571076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937351

RESUMO

New technologies have greatly shaped the scientific and medical landscape within the last years. The unprecedented expansion of data and information on RNA biology has led to the discovery of new RNA classes with unique functions and unexpected modifications. Today, the biggest challenge is to transfer the large number of findings in basic RNA biology into corresponding clinical RNA-based therapeutics. Lately, this research begins to yield positive outcomes. RNA drugs advance to the final phases of clinical trials or even receive FDA approval. Furthermore, the introduction of the RNA-guided gene-editing technology CRISPR and advances in the delivery of messenger RNAs have triggered a major progression in the field of RNA-therapeutics. Especially short interfering RNAs and antisense oligonucleotides are promising examples for novel categories of therapeutics. However, several issues need to be addressed including intracellular delivery, toxicity, and immune responses before utilizing RNAs in a clinical setting. In this review, we provide an overview on opportunities and challenges for clinical translation of RNA-based therapeutics, with an emphasis on advances in novel delivery technologies and abdominal aortic aneurysm disease where non-coding RNAs have been shown to play a crucial regulatory role.

6.
Mol Ther Nucleic Acids ; 24: 188-199, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33767915

RESUMO

Patients with type 2 diabetes (T2D) are threatened by excessive cardiovascular morbidity and mortality. While accelerated arterial stiffening may represent a critical mechanistic factor driving cardiovascular risk in T2D, specific therapies to contain the underlying diabetic arterial remodeling have been elusive. The present translational study investigates the role of microRNA-29b (miR-29b) as a driver and therapeutic target of diabetic aortic remodeling and stiffening. Using a murine model (db/db mice), as well as human aortic tissue samples, we find that diabetic aortic remodeling and stiffening is associated with medial fibrosis, as well as fragmentation of aortic elastic layers. miR-29b is significantly downregulated in T2D and miR-29b repression is sufficient to induce both aortic medial fibrosis and elastin breakdown through upregulation of its direct target genes COL1A1 and MMP2 thereby increasing aortic stiffness. Moreover, antioxidant treatment restores aortic miR-29b levels and counteracts diabetic aortic remodeling. Concluding, we identify miR-29b as a comprehensive-and therefore powerful-regulator of aortic remodeling and stiffening in T2D that moreover qualifies as a (redox-sensitive) target for therapeutic intervention.

7.
Mol Cell Biol ; 24(12): 5587-94, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15169917

RESUMO

Telomeric proteins have an essential role in the regulation of the length of the telomeric DNA tract and in protection against end-to-end chromosome fusion. Telomere organization and how individual proteins are involved in different telomere functions in living cells is largely unknown. By using green fluorescent protein tagging and photobleaching, we investigated in vivo interactions of human telomeric DNA-binding proteins with telomeric DNA. Our results show that telomeric proteins interact with telomeres in a complex dynamic fashion: TRF2, which has a dual role in chromosome end protection and telomere length homeostasis, resides at telomeres in two distinct pools. One fraction ( approximately 73%) has binding dynamics similar to TRF1 (residence time of approximately 44 s). Interestingly, the other fraction of TRF2 binds with similar dynamics as the putative end-protecting factor hPOT1 (residence time of approximately 11 min). Our data support a dynamic model of telomeres in which chromosome end-protection and telomere length homeostasis are governed by differential binding of telomeric proteins to telomeric DNA.


Assuntos
Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
8.
Cancer Res ; 62(4): 1057-62, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11861382

RESUMO

We recently developed a class of novel antitumor agents that elicit a potent growth-inhibitory response in many tumor cells cultured in vitro. WK175, a member of this class, was chosen as a model compound that showed strong in vitro efficacy. WK175 interferes with the intracellular steady-state level of NAD(+), resulting in a decreased cellular NAD(+) concentration. We found that WK175 induces apoptotic cell death without any DNA-damaging effect. The apoptotic death signaling pathway initiated by WK175 was examined in detail: mitochondrial membrane potential, cytochrome c release, caspase 3 activation, caspase 3 and poly(ADP-ribose) polymerase cleavage, and the appearance of a sub-G(1) cell cycle population were determined in time course studies in THP-1 (a human monocytic leukemia cell line) cells. We found activation of this cascade after 24 h of treatment with 10 nM WK175. Induction of apoptosis was prevented by bongkrekic acid, Z-Asp-Glu-Val-Asp-fluoromethylketone, and Z-Leu-Glu-His-Asp-fluoromethylketone, inhibitors of the mitochondrial permeability transition and of caspase 3 and 9, respectively, but not by Ac-Tyr-Val-Ala-Asp-CHO, a specific caspase 1 inhibitor, suggesting the involvement of the permeability transition pore, caspase 3, and caspase 9 in the WK175-induced apoptotic cascade. These results imply that decreased NAD(+) concentration initiates the apoptotic cascade, resulting in the antitumor effect of WK175.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , NAD/metabolismo , Compostos Orgânicos , Antineoplásicos/antagonistas & inibidores , Apoptose/fisiologia , Ácido Bongcréquico/farmacologia , Caspase 3 , Caspase 9 , Inibidores de Caspase , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Grupo dos Citocromos c/metabolismo , DNA de Neoplasias/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Leucemia Monocítica Aguda/tratamento farmacológico , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Frações Subcelulares/metabolismo , Células Tumorais Cultivadas
9.
Methods Mol Biol ; 464: 363-85, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18951195

RESUMO

Proteins involved in chromatin-interacting processes, like gene transcription, DNA replication, and DNA repair, bind directly or indirectly to DNA, leading to their immobilisation. However, to reach their target sites in the DNA the proteins have to somehow move through the nucleus. Fluorescence recovery after photobleaching (FRAP) has been shown to be a strong approach to study exactly these properties, i.e. mobility and (transient) immobilisation of the proteins under investigation. Here, we provide and discuss detailed protocols for some of the FRAP procedures that we have used to study protein behaviour in living cell nuclei. In addition, we provide examples of their application in the investigation of the androgen receptor (AR), a hormone-inducible transcription factor, and of two DNA-maintenance factors, the telomere binding proteins TRF1 and TRF2. We also provide protocols for qualitative FRAP analysis and a general scheme for computer modelling of the presented FRAP procedures that can be used to quantitatively analyse experimental FRAP curves.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas Nucleares/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Nucleares/genética
10.
Exp Cell Res ; 297(2): 434-43, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15212946

RESUMO

The critical factors in the regulation of telomere length are not yet clearly defined. Telomerase is a key player in telomere elongation, although previous studies have shown that telomeres are differentially elongated after telomerase reconstitution. Moreover, a clear relation between the level of telomerase activity and telomere length was not observed. To investigate which factors are critical in telomere length regulation, we generated 24 telomerase-reconstituted primary human fibroblast clones. In these clones, in vitro telomerase activity level is clearly related to telomere length. High levels of telomerase activity are associated with longer telomeres and better telomere maintenance over time. The correlation coefficient, however, indicates that the level of telomerase activity is not the only factor in the regulation of telomere length. Clearly, factors that are not measured in an in vitro telomerase activity assay are involved in telomere length regulation in vivo. To investigate which telomerase components are critical in regulating telomerase activity levels, we studied expression levels of hTERT mRNA and hTR. Expression is highly variable between individual clones, but not related to the level of telomerase activity or telomere length. Our results indicate that expression levels of hTERT mRNA and hTR do not regulate the activity level of the telomerase complex, suggesting posttranscriptional modification of hTERT or the presence of additional proteins that modulate telomerase enzyme activity.


Assuntos
Fibroblastos/enzimologia , Regulação Enzimológica da Expressão Gênica , Telomerase/análise , Telômero/metabolismo , Células Cultivadas , Células Clonais , Proteínas de Ligação a DNA , Citometria de Fluxo , Proteínas de Fluorescência Verde , Humanos , Hibridização in Situ Fluorescente , Proteínas Luminescentes , Reação em Cadeia da Polimerase , RNA , Retroviridae/genética , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA