Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plant Cell ; 36(2): 404-426, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37804096

RESUMO

L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Serina/metabolismo , Glicina/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Arabidopsis/metabolismo , Redes e Vias Metabólicas/genética , Enxofre/metabolismo , Desenvolvimento Vegetal
2.
Plant Cell ; 35(12): 4238-4265, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648264

RESUMO

Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.


Assuntos
Vitis , Vitis/genética , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Terpenos/metabolismo , Protetores Solares , Flavonóis/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant J ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900073

RESUMO

Fruit ripening is an essential developmental stage in Angiosperms triggered by hormonal signals such as ethylene, a major player in climacteric ripening. Melon is a unique crop showing both climacteric and non-climacteric cultivars, offering an ideal model for dissecting the genetic mechanisms underpinning this process. The major quantitative trait locus ETHQV8.1 was previously identified as a key regulator of melon fruit ripening. Here, we narrowed down ETHQV8.1 to a precise genomic region containing a single gene, the transcription factor CmERF024. Functional validation using CRISPR/Cas9 knock-out plants unequivocally identified CmERF024 as the causal gene governing ETHQV8.1. The erf024 mutants exhibited suppression of ethylene production, leading to a significant delay and attenuation of fruit ripening. Integrative multi-omic analyses encompassing RNA-seq, DAP-seq, and DNase-seq revealed the association of CmERF024 with chromatin accessibility and gene expression dynamics throughout fruit ripening. Our data suggest CmERF024 as a novel regulator of climacteric fruit ripening in melon.

4.
Plant Physiol ; 192(3): 1928-1946, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36718552

RESUMO

Grapevine (Vitis vinifera L.) is one of the most widely cultivated fruit crops because the winemaking industry has huge economic relevance worldwide. Uncovering the molecular mechanisms controlling the developmental progression of plant organs will prove essential for maintaining high-quality grapes, expressly in the context of climate change, which impairs the ripening process. Through a deep inspection of transcriptomic data, we identified VviNAC60, a member of the NAC transcription factor family, as a putative regulator of grapevine organ maturation. We explored VviNAC60 binding landscapes through DNA affinity purification followed by sequencing and compared bound genes with transcriptomics datasets from grapevine plants stably and transiently overexpressing VviNAC60 to define a set of high-confidence targets. Among these, we identified key molecular markers associated with organ senescence and fruit ripening. Physiological, metabolic, and promoter activation analyses showed that VviNAC60 induces chlorophyll degradation and anthocyanin accumulation through the upregulation of STAY-GREEN PROTEIN 1 (VviSGR1) and VviMYBA1, respectively, with the latter being upregulated through a VviNAC60-VviNAC03 regulatory complex. Despite sharing a closer phylogenetic relationship with senescence-related homologs to the NAC transcription factor AtNAP, VviNAC60 complemented the nonripening(nor) mutant phenotype in tomato (Solanum lycopersicum), suggesting a dual role as an orchestrator of both ripening- and senescence-related processes. Our data support VviNAC60 as a regulator of processes initiated in the grapevine vegetative- to mature-phase organ transition and therefore as a potential target for enhancing the environmental resilience of grapevine by fine-tuning the duration of the vegetative phase.


Assuntos
Fatores de Transcrição , Vitis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Vitis/fisiologia
5.
J Exp Bot ; 75(8): 2330-2350, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159048

RESUMO

During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.


Assuntos
Estilbenos , Vitis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico , Estilbenos/metabolismo , Vitis/metabolismo , Estresse Oxidativo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Plant J ; 110(2): 529-547, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092714

RESUMO

The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis vinifera L.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP-Seq) allows for the genome-wide TF-binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP-Seq of MYB14/MYB15 was combined with aggregate gene co-expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47 STS family genes. Moreover, all three MYBs bind to several PAL, C4H, and 4CL genes, in addition to shikimate pathway genes, the WRKY03 stilbenoid co-regulator and resveratrol-modifying gene candidates among which ROMT2-3 were validated enzymatically. A high proportion of DAP-Seq bound genes were induced in the activated transcriptomes of transient MYB15-overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3-MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP-Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome-wide approaches in the context of non-model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.


Assuntos
Regulação da Expressão Gênica de Plantas , Estilbenos , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Chiquímico , Estilbenos/metabolismo
7.
J Exp Bot ; 74(21): 6522-6540, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37668374

RESUMO

Gene co-expression networks (GCNs) have not been extensively studied in non-model plants. However, the rapid accumulation of transcriptome datasets in certain species represents an opportunity to explore underutilized network aggregation approaches. In fact, aggregated GCNs (aggGCNs) highlight robust co-expression interactions and improve functional connectivity. We applied and evaluated two different aggregation methods on public grapevine RNA-Seq datasets from three different tissues (leaf, berry, and 'all organs'). Our results show that co-occurrence-based aggregation generally yielded the best-performing networks. We applied aggGCNs to study several transcription factor gene families, showing their capacity for detecting both already-described and novel regulatory relationships between R2R3-MYBs, bHLH/MYC, and multiple specialized metabolic pathways. Specifically, transcription factor gene- and pathway-centered network analyses successfully ascertained the previously established role of VviMYBPA1 in controlling the accumulation of proanthocyanidins while providing insights into its novel role as a regulator of p-coumaroyl-CoA biosynthesis as well as the shikimate and aromatic amino acid pathways. This network was validated using DNA affinity purification sequencing data, demonstrating that co-expression networks of transcriptional activators can serve as a proxy of gene regulatory networks. This study presents an open repository to reproduce networks in other crops and a GCN application within the Vitviz platform, a user-friendly tool for exploring co-expression relationships.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica
8.
Proc Natl Acad Sci U S A ; 117(35): 21796-21803, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817419

RESUMO

Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast identity. In a second stage, phytoene conversion into downstream carotenoids is required for the differentiation of chromoplasts, a process that involves a concurrent reprogramming of nuclear gene expression and plastid morphology for improved carotenoid storage. We hence demonstrate that loss of photosynthetic competence and enhanced production of carotenoids are not just consequences but requirements for chloroplasts to differentiate into chromoplasts.


Assuntos
Carotenoides/metabolismo , Cloroplastos/metabolismo , Plastídeos/metabolismo , Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Cloroplastos/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plastídeos/fisiologia , Engenharia de Proteínas/métodos , Nicotiana/metabolismo , beta Caroteno/metabolismo
9.
Planta ; 253(4): 84, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33788027

RESUMO

MAIN CONCLUSION: White-fleshed grape cv. 'Gamay' and its two teinturier variants presented distinct spatial-temporal accumulation of anthocyanins, with uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. In most red grape cultivars, anthocyanins accumulate exclusively in the berry skin, while 'teinturier' cultivars also accumulate anthocyanins in the pulp. Here, we investigated the teinturier cvs. 'Gamay de Bouze' and 'Gamay Fréaux' (two somatic variants of the white-fleshed cv. 'Gamay') through metabolic and transcript analysis to clarify whether these two somatic variants have the same anthocyanin accumulation pattern in the skin and pulp, and whether primary metabolites are also affected. The skin of the three cultivars and the pulp of 'Gamay de Bouze' begun to accumulate anthocyanins at the onset of berry ripening. However, the pulp of 'Gamay Fréaux' exhibited a distinct anthocyanin accumulation pattern, starting as early as fruit set with very low level of sugars. The highest level of anthocyanins was found in 'Gamay Fréaux' skin, followed by 'Gamay de Bouze' and 'Gamay'. Consistently, the transcript abundance of genes involved in anthocyanin biosynthesis were in line with the anthocyanin levels in the three cultivars. Despite no evident differences in pulp sugar content, the concentration of glucose and fructose in the skin of 'Gamay Fréaux' was only half of those in the skin of 'Gamay' and 'Gamay de Bouze' throughout all berry ripening, suggesting an uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. The study provides a comprehensive view of metabolic consequences in grape somatic variants and the three almost isogenic genotypes can serve as ideal reagents to further uncover the mechanisms underlying the linkage between sugar and anthocyanin accumulation.


Assuntos
Vitis , Antocianinas , Frutose , Frutas/genética , Regulação da Expressão Gênica de Plantas , Açúcares , Vitis/genética
10.
BMC Genomics ; 20(1): 952, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31815637

RESUMO

BACKGROUND: Somatic mutations occurring within meristems of vegetative propagation material have had a major role in increasing the genetic diversity of the domesticated grapevine (Vitis vinifera subsp. vinifera). The most well studied somatic variation in this species is the one affecting fruit pigmentation, leading to a plethora of different berry skin colors. Color depletion and reversion are often observed in the field. In this study we analyzed the origin of a novel white-to-red skin color reversion and studied its possible metabolic and transcriptomic consequences on cv. 'Muscat à Petits Grains Blancs' (synonym cv. 'Moscatel Galego Branco'), a member of the large family of Muscats. RESULTS: The mild red-skinned variant (cv. 'Muscat à Petits Grains Rouge', synonym cv. 'Moscatel Galego Roxo'), characterized by a preferential accumulation of di-hydroxylated anthocyanins, showed in heterozygosis a partially-excised Gret1 retrotransposon in the promoter region of the MYBA1 anthocyanin regulator, while MYBA2 was still in homozygosis for its non-functional allele. Through metabolic (anthocyanin, resveratrol and piceid quantifications) and transcriptomic (RNA-Seq) analyses, we show that within a near-isogenic background, the transcriptomic consequences of color reversion are largely associated to diminished light/UV-B responses probably as a consequence of the augment of metabolic sunscreens (i.e. anthocyanins). CONCLUSIONS: We propose that the reduced activity of the flavonoid tri-hydroxylated sub-branch and decreased anthocyanin synthesis and modification (e.g. methylation and acylation) are the potential causes for the mild red-skinned coloration in the pigmented revertant. The observed positive relation between anthocyanins and stilbenes could be attributable to an increased influx of phenylpropanoid intermediaries due to the replenished activity of MYBA1, an effect yet to be demonstrated in other somatic variants.


Assuntos
Pigmentação/genética , Vitis/genética , Vitis/metabolismo , Alelos , Antocianinas/genética , Antocianinas/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Retroelementos/genética , Metabolismo Secundário/genética , Estilbenos/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Vitis/química
11.
Plant J ; 91(2): 220-236, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370629

RESUMO

Grapevine organs accumulate anthocyanins in a cultivar-specific and environmentally induced manner. The MYBA1-A2 genes within the berry color locus in chromosome 2 represent the major genetic determinants of fruit color. The simultaneous occurrence of transposon insertions and point mutations in these genes is responsible for most white-skinned phenotypes; however, the red pigmentation found in vegetative organs suggests the presence of additional regulators. This work describes a genomic region of chromosome 14 containing three closely related R2R3-MYB genes, named MYBA5, MYBA6 and MYBA7. Ectopic expression of the latter two genes in grapevine hairy roots promoted anthocyanin accumulation without affecting other phenylpropanoids. Transcriptomic profiling of hairy roots expressing MYBA1, MYBA6 and MYBA7 showed that these regulators share the activation of late biosynthetic and modification/transport-related genes, but differ in the activation of the FLAVONOID-3'5'-HYDROXYLASE (F3'5'H) family. An alternatively spliced MYBA6 variant was incapable of activating anthocyanin synthesis, however, because of the lack of an MYC1 interaction domain. MYBA1, MYBA6.1 and MYBA7 activated the promoters of UDP-GLUCOSE:FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFGT) and ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (3AT), but only MYBA1 induced F3'5'H in concordance with the low proportion of tri-hydroxylated anthocyanins found in MYBA6-A7 hairy roots. This putative new color locus is related to the red/cyanidic pigmentation of vegetative organs in black- and white-skinned cultivars, and forms part of the UV-B radiation response pathway orchestrated by ELONGATED HYPOCOTYL 5 (HY5). These results demonstrate the involvement of additional anthocyanin regulators in grapevine and suggest an evolutionary divergence between the two grape color loci for controlling additional targets of the flavonoid pathway.


Assuntos
Antocianinas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/metabolismo , Antocianinas/genética , Cromossomos de Plantas , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Vitis/genética
12.
Plant Cell Physiol ; 59(5): 1043-1059, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29529275

RESUMO

Stilbene synthase (STS) is the key enzyme leading to the biosynthesis of resveratrol. Recently we reported two R2R3-MYB transcription factor (TF) genes that regulate the stilbene biosynthetic pathway in grapevine: VviMYB14 and VviMYB15. These genes are strongly co-expressed with STS genes under a range of stress and developmental conditions, in agreement with the specific activation of STS promoters by these TFs. Genome-wide gene co-expression analysis using two separate transcriptome compendia based on microarray and RNA sequencing data revealed that WRKY TFs were the top TF family correlated with STS genes. On the basis of correlation frequency, four WRKY genes, namely VviWRKY03, VviWRKY24, VviWRKY43 and VviWRKY53, were further shortlisted and functionally validated. Expression analyses under both unstressed and stressed conditions, together with promoter-luciferase reporter assays, suggested different hierarchies for these TFs in the regulation of the stilbene biosynthetic pathway. In particular, VviWRKY24 seems to act as a singular effector in the activation of the VviSTS29 promoter, while VviWRKY03 acts through a combinatorial effect with VviMYB14, suggesting that these two regulators may interact at the protein level as previously reported in other species.


Assuntos
Aciltransferases/genética , Genes de Plantas , Fatores de Transcrição/metabolismo , Vitis/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Fatores de Transcrição/genética
13.
J Exp Bot ; 69(7): 1749-1764, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29385617

RESUMO

Grapevine (Vitis vinifera L.) is a widely cultivated fruit crop whose growth and productivity are greatly affected by low temperatures. On the other hand, wild Vitis species represent valuable genetic resources of natural stress tolerance. We have isolated and characterized a MYB-like gene encoding a putative GARP-type transcription factor from Amur grape (V. amurensis) designated as VaAQUILO. AQUILO (AQ) is induced by cold in both V. amurensis and V. vinifera, and its overexpression results in significantly improved tolerance to cold both in transgenic Arabidopsis and in Amur grape calli. In Arabidopsis, the ectopic expression of VaAQ increased antioxidant enzyme activities and up-regulated reactive oxygen species- (ROS) scavenging-related genes. Comparative mRNA sequencing profiling of 35S:VaAQ Arabidopsis plants suggests that this transcription factor is related to phosphate homeostasis like their Arabidopsis closest homologues: AtHRS1 and AtHHO2. However, when a cold stress is imposed, AQ is tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides (RFOs), as observed by the up-regulation of galactinol synthase (GoLS) and raffinose synthase genes. Gene co-expression network (GCN) and cis-regulatory element (CRE) analyses in grapevine indicated AQ as potentially regulating VvGoLS genes. Increased RFO content was confirmed in both transgenic Arabidopsis and Amur grape calli overexpressing VaAQ. Taken together, our results imply that AQ improves cold tolerance through promoting the accumulation of osmoprotectants.


Assuntos
Temperatura Baixa , Proteínas de Plantas/genética , Rafinose/metabolismo , Fatores de Transcrição/genética , Vitis/fisiologia , Sequência de Aminoácidos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Vitis/genética
14.
Plant Physiol ; 167(4): 1448-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659381

RESUMO

Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of transcriptional activators.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Propanóis/metabolismo , Vitis/genética , Motivos de Aminoácidos , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação para Baixo , Flores/genética , Flores/metabolismo , Genótipo , Dados de Sequência Molecular , Petunia/genética , Petunia/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes/genética , Sementes/metabolismo , Análise de Sequência de DNA , Nicotiana/genética , Nicotiana/metabolismo , Vitis/metabolismo
15.
J Exp Bot ; 67(6): 1639-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26956505

RESUMO

Shoot apical meristem activity is controlled by complex regulatory networks in which components such as transcription factors, miRNAs, small peptides, hormones, enzymes and epigenetic marks all participate. Many key genes that determine the inherent characteristics of the shoot apical meristem have been identified through genetic approaches. Recent advances in genome-wide studies generating extensive transcriptomic and DNA-binding datasets have increased our understanding of the interactions within the regulatory networks that control the activity of the meristem, identifying new regulators and uncovering connections between previously unlinked network components. In this review, we focus on recent studies that illustrate the contribution of whole genome analyses to understand meristem function.


Assuntos
Redes Reguladoras de Genes , Genoma de Planta , Meristema/genética , Genes de Plantas , Folhas de Planta/embriologia , Folhas de Planta/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
J Exp Bot ; 67(18): 5429-5445, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543604

RESUMO

Grapevine (Vitis vinifera L.) is a species well known for its adaptation to radiation. However, photomorphogenic factors related to UV-B responses have not been molecularly characterized. We cloned and studied the role of UV-B RECEPTOR (UVR1), ELONGATED HYPOCOTYL 5 (HY5), and HY5 HOMOLOGUE (HYH) from V. vinifera We performed gene functional characterizations, generated co-expression networks, and tested them in different environmental conditions. These genes complemented the Arabidopsis uvr8 and hy5 mutants in morphological and secondary metabolic responses to radiation. We combined microarray and RNA sequencing (RNA-seq) data with promoter inspections to identify HY5 and HYH putative target genes and their DNA binding preferences. Despite sharing a large set of common co-expressed genes, we found different hierarchies for HY5 and HYH depending on the organ and stress condition, reflecting both co-operative and partially redundant roles. New candidate UV-B gene markers were supported by the presence of HY5-binding sites. These included a set of flavonol-related genes that were up-regulated in a HY5 transient expression assay. We irradiated in vitro plantlets and fruits from old potted vines with high and low UV-B exposures and followed the accumulation of flavonols and changes in gene expression in comparison with non-irradiated conditions. UVR1, HY5, and HYH expression varied with organ, developmental stage, and type of radiation. Surprisingly, UVR1 expression was modulated by shading and temperature in berries, but not by UV-B radiation. We propose that the UV-B response machinery favours berry flavonol accumulation through the activation of HY5 and HYH at different developmental stages at both high and low UV-B exposures.


Assuntos
Flavonóis/metabolismo , Proteínas de Plantas/fisiologia , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/fisiologia , Vitis/efeitos da radiação , Clonagem Molecular , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Genes de Plantas/fisiologia , Transdução de Sinais/fisiologia , Raios Ultravioleta , Regulação para Cima/fisiologia , Regulação para Cima/efeitos da radiação , Vitis/metabolismo , Vitis/fisiologia
17.
Hortic Res ; 11(2): uhad294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38487296

RESUMO

Peach is a model for Prunus genetics and genomics, however, identifying and validating genes associated to peach breeding traits is a complex task. A gene coexpression network (GCN) capable of capturing stable gene-gene relationships would help researchers overcome the intrinsic limitations of peach genetics and genomics approaches and outline future research opportunities. In this study, we created four GCNs from 604 Illumina RNA-Seq libraries. We evaluated the performance of every GCN in predicting functional annotations using an algorithm based on the 'guilty-by-association' principle. The GCN with the best performance was COO300, encompassing 21 956 genes. To validate its performance predicting gene function, we performed two case studies. In case study 1, we used two genes involved in fruit flesh softening: the endopolygalacturonases PpPG21 and PpPG22. Genes coexpressing with both genes were extracted and referred to as melting flesh (MF) network. Finally, we performed an enrichment analysis of MF network and compared the results with the current knowledge regarding peach fruit softening. The MF network mostly included genes involved in cell wall expansion and remodeling, and with expressions triggered by ripening-related phytohormones, such as ethylene, auxin, and methyl jasmonate. In case study 2, we explored potential targets of the anthocyanin regulator PpMYB10.1 by comparing its gene-centered coexpression network with that of its grapevine orthologues, identifying a common regulatory network. These results validated COO300 as a powerful tool for peach and Prunus research. This network, renamed as PeachGCN v1.0, and the scripts required to perform a function prediction analysis are available at https://github.com/felipecobos/PeachGCN.

18.
Methods Mol Biol ; 2686: 495-508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540374

RESUMO

Developmental processes in multicellular organisms depend on the proficiency of cells to orchestrate different gene expression programs. Over the past years, several studies of reproductive organ development have considered genomic analyses of transcription factors and global gene expression changes, modeling complex gene regulatory networks. Nevertheless, the dynamic view of developmental processes requires, as well, the study of the proteome in its expression, complexity, and relationship with the transcriptome. In this chapter, we describe a dual extraction method-for protein and RNA-for the characterization of genome expression at proteome level and its correlation to transcript expression data. We also present a shotgun proteomic procedure (LC-MS/MS) followed by a pipeline for the imputation of missing values in mass spectrometry results.


Assuntos
Multiômica , Proteômica , Proteômica/métodos , Cromatografia Líquida , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Flores/genética , Flores/metabolismo
19.
Methods Mol Biol ; 2686: 509-536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540375

RESUMO

Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6-7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Proteoma/química , Flores
20.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36966465

RESUMO

The genome sequence of the diploid and highly homozygous Vitis vinifera genotype PN40024 serves as the reference for many grapevine studies. Despite several improvements to the PN40024 genome assembly, its current version PN12X.v2 is quite fragmented and only represents the haploid state of the genome with mixed haplotypes. In fact, being nearly homozygous, this genome contains several heterozygous regions that are yet to be resolved. Taking the opportunity of improvements that long-read sequencing technologies offer to fully discriminate haplotype sequences, an improved version of the reference, called PN40024.v4, was generated. Through incorporating long genomic sequencing reads to the assembly, the continuity of the 12X.v2 scaffolds was highly increased with a total number decreasing from 2,059 to 640 and a reduction in N bases of 88%. Additionally, the full alternative haplotype sequence was built for the first time, the chromosome anchoring was improved and the number of unplaced scaffolds was reduced by half. To obtain a high-quality gene annotation that outperforms previous versions, a liftover approach was complemented with an optimized annotation workflow for Vitis. Integration of the gene reference catalogue and its manual curation have also assisted in improving the annotation, while defining the most reliable estimation of 35,230 genes to date. Finally, we demonstrated that PN40024 resulted from 9 selfings of cv. "Helfensteiner" (cross of cv. "Pinot noir" and "Schiava grossa") instead of a single "Pinot noir". These advances will help maintain the PN40024 genome as a gold-standard reference, also contributing toward the eventual elaboration of the grapevine pangenome.


Assuntos
Genoma de Planta , Vitis , Genótipo , Mapeamento Cromossômico , Sequência de Bases , Anotação de Sequência Molecular , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA