Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 170(5): 899-912.e10, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28803727

RESUMO

Microsatellite repeat expansions in DNA produce pathogenic RNA species that cause dominantly inherited diseases such as myotonic dystrophy type 1 and 2 (DM1/2), Huntington's disease, and C9orf72-linked amyotrophic lateral sclerosis (C9-ALS). Means to target these repetitive RNAs are required for diagnostic and therapeutic purposes. Here, we describe the development of a programmable CRISPR system capable of specifically visualizing and eliminating these toxic RNAs. We observe specific targeting and efficient elimination of microsatellite repeat expansion RNAs both when exogenously expressed and in patient cells. Importantly, RNA-targeting Cas9 (RCas9) reverses hallmark features of disease including elimination of RNA foci among all conditions studied (DM1, DM2, C9-ALS, polyglutamine diseases), reduction of polyglutamine protein products, relocalization of repeat-bound proteins to resemble healthy controls, and efficient reversal of DM1-associated splicing abnormalities in patient myotubes. Finally, we report a truncated RCas9 system compatible with adeno-associated viral packaging. This effort highlights the potential of RCas9 for human therapeutics.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Terapia Genética/métodos , Oligonucleotídeos Antissenso/farmacologia , Animais , Células COS , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Repetições de Microssatélites , Splicing de RNA , Expansão das Repetições de Trinucleotídeos
2.
Genes Dev ; 38(15-16): 698-717, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39142832

RESUMO

Neurological and neuromuscular diseases resulting from familial, sporadic, or de novo mutations have devasting personal, familial, and societal impacts. As the initial product of DNA transcription, RNA transcripts and their associated ribonucleoprotein complexes provide attractive targets for modulation by increasing wild-type or blocking mutant allele expression, thus relieving downstream pathological consequences. Therefore, it is unsurprising that many existing and under-development therapeutics have focused on targeting disease-associated RNA transcripts as a frontline drug strategy for these genetic disorders. This review focuses on the current range of RNA targeting modalities using examples of both dominant and recessive neurological and neuromuscular diseases.


Assuntos
Doenças do Sistema Nervoso , Doenças Neuromusculares , RNA , Humanos , Doenças Neuromusculares/genética , Doenças Neuromusculares/terapia , Doenças Neuromusculares/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/terapia , Animais , RNA/metabolismo , RNA/genética , Terapia de Alvo Molecular/métodos
3.
Mol Cell ; 83(21): 3818-3834.e7, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37820733

RESUMO

N6-methyladenosine (m6A) modifications play crucial roles in RNA metabolism. How m6A regulates RNA polymerase II (RNA Pol II) transcription remains unclear. We find that 7SK small nuclear RNA (snRNA), a regulator of RNA Pol II promoter-proximal pausing, is highly m6A-modified in non-small cell lung cancer (NSCLC) cells. In A549 cells, we identified eight m6A sites on 7SK and discovered methyltransferase-like 3 (METTL3) and alkB homolog 5 (ALKBH5) as the responsible writer and eraser. When the m6A-7SK is specifically erased by a dCasRx-ALKBH5 fusion protein, A549 cell growth is attenuated due to reduction of RNA Pol II transcription. Mechanistically, removal of m6A leads to 7SK structural rearrangements that facilitate sequestration of the positive transcription elongation factor b (P-TEFb) complex, which results in reduction of serine 2 phosphorylation (Ser2P) in the RNA Pol II C-terminal domain and accumulation of RNA Pol II in the promoter-proximal region. Taken together, we uncover that m6A modifications of a non-coding RNA regulate RNA Pol II transcription and NSCLC tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Fator B de Elongação Transcricional Positiva/genética , Neoplasias Pulmonares/genética , RNA Nuclear Pequeno/genética , Transcrição Gênica , Células HeLa , Metiltransferases/genética , Metiltransferases/metabolismo
4.
Nature ; 605(7911): 653-658, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364602

RESUMO

Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2-4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s-1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.

5.
Genes Dev ; 34(17-18): 1107-1109, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873576

RESUMO

Pathomechanistic studies of neurodegenerative diseases have documented the toxic effects of mutant protein expression, misfolding, and aggregation. However, alterations in the expression of the corresponding wild-type (WT) gene, due to either variations in copy number or transcriptional regulation, have also been linked to Alzheimer's and Parkinson's diseases. Another striking example of this mutant and WT duality is spinocerebellar ataxia type 1 (SCA1) caused by an ATXN1 polyglutamine protein, although subtle variations in WT AXTN1 levels also lead to ataxia. In this issue of Genes & Development, Nitschke and colleagues (pp. 1147-1160) delve into posttranscriptional events that fine-tune ATXN1 expression and uncover a key role for 5' untranslated region (5' UTR)-miR760 interactions. Thus, this study not only provides significant insights into the complexities of modulating the expression of a dosage-sensitive gene but also highlights the critical importance of identifying noncoding polymorphisms as disease risk factors.


Assuntos
Ataxina-1/genética , Regulação da Expressão Gênica , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/prevenção & controle , Regiões 5' não Traduzidas/genética , Animais , Ataxina-1/metabolismo , Dosagem de Genes , Predisposição Genética para Doença , Humanos , Polimorfismo Genético , Fatores de Risco , Ataxias Espinocerebelares/fisiopatologia
6.
Genes Dev ; 33(23-24): 1635-1640, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31624084

RESUMO

Short tandem repeats (STRs) are prone to expansion mutations that cause multiple hereditary neurological and neuromuscular diseases. To study pathomechanisms using mouse models that recapitulate the tissue specificity and developmental timing of an STR expansion gene, we used rolling circle amplification and CRISPR/Cas9-mediated genome editing to generate Dmpk CTG expansion (CTGexp) knockin models of myotonic dystrophy type 1 (DM1). We demonstrate that skeletal muscle myoblasts and brain choroid plexus epithelial cells are particularly susceptible to Dmpk CTGexp mutations and RNA missplicing. Our results implicate dysregulation of muscle regeneration and cerebrospinal fluid homeostasis as early pathogenic events in DM1.


Assuntos
Processamento Alternativo/genética , Repetições de Microssatélites/genética , Músculo Esquelético/fisiopatologia , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Splicing de RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Plexo Corióideo/fisiopatologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/citologia , Mutação , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Proteínas de Ligação a RNA/genética
7.
Mol Cell ; 72(3): 399-401, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388407

RESUMO

In this issue of Molecular Cell, Yap et al. (2018) identify a novel lncRNA (PNCTR) that contains short tandem repeats that trap the RNA splicing factor PTBP1 in the perinucleolar compartment and link this sequestration activity to cancer cell development.


Assuntos
Processamento Alternativo , RNA Longo não Codificante , Sobrevivência Celular , Repetições de Microssatélites , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética
8.
PLoS Biol ; 20(4): e3001615, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35476669

RESUMO

Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.


Assuntos
Placenta , Proteínas de Ligação a RNA , Processamento Alternativo/genética , Animais , Eutérios/genética , Feminino , Placenta/metabolismo , Gravidez , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Brain ; 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39460437

RESUMO

Muscleblind-like proteins (MBNLs) are a family of RNA-binding proteins that play essential roles in the regulation of RNA metabolism. Beyond their canonical role in RNA regulation, MBNL proteins have emerged as key players in the pathogenesis of Myotonic Dystrophy type 1 (DM1). In DM1, sequestration of MBNL proteins by expansion of the CUG repeat RNA leads to functional depletion of MBNL, resulting in deregulated alternative splicing and aberrant RNA processing, which underlie the clinical features of the disease. While attention to MBNL proteins has focused on their functions in skeletal muscle, new evidence suggests that their importance extends to motor neurons (MNs), pivotal cellular components in the control of motor skills and movement. To address this question, we generated conditional double knockout mice in which Mbnl1 and Mbnl2 were specifically deleted in motor neurons (MN-dKO). Adult MN-dKO mice develop gait coordination deficits associated with structural and ultrastructural defects in the neuromuscular junction, indicating that MBNL activity in MNs is crucial for the maintenance of the neuromuscular junction. In addition, transcriptome analysis performed on the spinal cord of MN-dKO mice identified mis-splicing events in genes associated with synaptic transmission and neuromuscular junction homeostasis. In summary, our results highlight the complex roles and regulatory mechanisms of MBNL proteins in MNs for muscle function and locomotion. This work provides valuable insights into fundamental aspects of RNA biology and offers promising avenues for therapeutic intervention in DM1 as well as a range of diseases associated with RNA dysregulation.

10.
Mol Cell ; 68(3): 479-490.e5, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056323

RESUMO

Transcription of expanded microsatellite repeats is associated with multiple human diseases, including myotonic dystrophy, Fuchs endothelial corneal dystrophy, and C9orf72-ALS/FTD. Reducing production of RNA and proteins arising from these expanded loci holds therapeutic benefit. Here, we tested the hypothesis that deactivated Cas9 enzyme impedes transcription across expanded microsatellites. We observed a repeat length-, PAM-, and strand-dependent reduction of repeat-containing RNAs upon targeting dCas9 directly to repeat sequences; targeting the non-template strand was more effective. Aberrant splicing patterns were rescued in DM1 cells, and production of RAN peptides characteristic of DM1, DM2, and C9orf72-ALS/FTD cells was drastically decreased. Systemic delivery of dCas9/gRNA by adeno-associated virus led to reductions in pathological RNA foci, rescue of chloride channel 1 protein expression, and decreased myotonia. These observations suggest that transcription of microsatellite repeat-containing RNAs is more sensitive to perturbation than transcription of other RNAs, indicating potentially viable strategies for therapeutic intervention.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Terapia Genética/métodos , Repetições de Microssatélites , Distrofia Miotônica/terapia , Transcrição Gênica , Processamento Alternativo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Regulação para Baixo , Ativação Enzimática , Feminino , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos Transgênicos , Mioblastos/metabolismo , Mioblastos/patologia , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , RNA Guia de Cinetoplastídeos/biossíntese , RNA Guia de Cinetoplastídeos/genética , Transdução Genética , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(35): e2208795119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36001691

RESUMO

The superior photosynthetic efficiency of C4 leaves over C3 leaves is owing to their unique Kranz anatomy, in which the vein is surrounded by one layer of bundle sheath (BS) cells and one layer of mesophyll (M) cells. Kranz anatomy development starts from three contiguous ground meristem (GM) cells, but its regulators and underlying molecular mechanism are largely unknown. To identify the regulators, we obtained the transcriptomes of 11 maize embryonic leaf cell types from five stages of pre-Kranz cells starting from median GM cells and six stages of pre-M cells starting from undifferentiated cells. Principal component and clustering analyses of transcriptomic data revealed rapid pre-Kranz cell differentiation in the first two stages but slow differentiation in the last three stages, suggesting early Kranz cell fate determination. In contrast, pre-M cells exhibit a more prolonged transcriptional differentiation process. Differential gene expression and coexpression analyses identified gene coexpression modules, one of which included 3 auxin transporter and 18 transcription factor (TF) genes, including known regulators of Kranz anatomy and/or vascular development. In situ hybridization of 11 TF genes validated their expression in early Kranz development. We determined the binding motifs of 15 TFs, predicted TF target gene relationships among the 18 TF and 3 auxin transporter genes, and validated 67 predictions by electrophoresis mobility shift assay. From these data, we constructed a gene regulatory network for Kranz development. Our study sheds light on the regulation of early maize leaf development and provides candidate leaf development regulators for future study.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Transcriptoma , Zea mays , Ácidos Indolacéticos/metabolismo , Microdissecção e Captura a Laser , Fotossíntese/genética , Folhas de Planta/embriologia , Folhas de Planta/genética , Zea mays/enzimologia , Zea mays/genética
12.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855978

RESUMO

Integration of 2D semiconductors with photonic crystal slabs provides an attractive approach to achieving strong light-matter coupling and exciton-polariton formation in a chip-compatible geometry. However, for the development of practical devices, it is crucial that polariton excitations are easily tunable and exhibit a strong nonlinear response. Here we study neutral and charged exciton-polaritons in an electrostatically gated photonic crystal slab with an embedded monolayer semiconductor MoSe2 and experimentally demonstrate a novel approach to optical control based on polariton nonlinearity. We show that spatial modulation of the dielectric environment within the photonic crystal unit cell results in the formation of two distinct excitonic species with significantly different nonlinear responses of the corresponding charged exciton-polaritons under optical pumping. This behavior enables optical switching with ultrashort laser pulses and can be sensitively controlled via an electrostatic gate voltage. Our results open new avenues toward the development of active polaritonic devices in a compact chip-compatible implementation.

13.
Genes Dev ; 31(11): 1122-1133, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698297

RESUMO

Myotonic dystrophy type 1 (DM1) is a CTG microsatellite expansion (CTGexp) disorder caused by expression of CUGexp RNAs. These mutant RNAs alter the activities of RNA processing factors, including MBNL proteins, leading to re-expression of fetal isoforms in adult tissues and DM1 pathology. While this pathogenesis model accounts for adult-onset disease, the molecular basis of congenital DM (CDM) is unknown. Here, we test the hypothesis that disruption of developmentally regulated RNA alternative processing pathways contributes to CDM disease. We identify prominent alternative splicing and polyadenylation abnormalities in infant CDM muscle, and, although most are also misregulated in adult-onset DM1, dysregulation is significantly more severe in CDM. Furthermore, analysis of alternative splicing during human myogenesis reveals that CDM-relevant exons undergo prenatal RNA isoform transitions and are predicted to be disrupted by CUGexp-associated mechanisms in utero. To test this possibility and the contribution of MBNLs to CDM pathogenesis, we generated mouse Mbnl double (Mbnl1; Mbnl2) and triple (Mbnl1; Mbnl2; Mbnl3) muscle-specific knockout models that recapitulate the congenital myopathy, gene expression, and spliceopathy defects characteristic of CDM. This study demonstrates that RNA misprocessing is a major pathogenic factor in CDM and provides novel mouse models to further examine roles for cotranscriptional/post-transcriptional gene regulation during development.


Assuntos
Desenvolvimento Muscular/genética , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Animais , Proteínas de Transporte/genética , Células Cultivadas , Pré-Escolar , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Humanos , Lactente , Camundongos , Proteínas de Ligação a RNA/metabolismo
14.
Brain ; 146(10): 4217-4232, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37143315

RESUMO

Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.


Assuntos
Distrofia Miotônica , Humanos , Feminino , Camundongos , Animais , Distrofia Miotônica/genética , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , RNA/genética , Camundongos Knockout , Expansão das Repetições de Trinucleotídeos
15.
Mol Cell ; 61(6): 821-33, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26907613

RESUMO

Spatial restriction of mRNA to distinct subcellular locations enables local regulation and synthesis of proteins. However, the organizing principles of mRNA localization remain poorly understood. Here we analyzed subcellular transcriptomes of neural projections and soma of primary mouse cortical neurons and two neuronal cell lines and found that alternative last exons (ALEs) often confer isoform-specific localization. Surprisingly, gene-distal ALE isoforms were four times more often localized to neurites than gene-proximal isoforms. Localized isoforms were induced during neuronal differentiation and enriched for motifs associated with muscleblind-like (Mbnl) family RNA-binding proteins. Depletion of Mbnl1 and/or Mbnl2 reduced localization of hundreds of transcripts, implicating Mbnls in localization of mRNAs to neurites. We provide evidence supporting a model in which the linkage between genomic position of ALEs and subcellular localization enables coordinated induction of localization-competent mRNA isoforms through a post-transcriptional regulatory program that is induced during differentiation and reversed in cellular reprogramming and cancer.


Assuntos
Proteínas de Ligação a DNA/genética , Neuritos/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Animais , Diferenciação Celular/genética , Reprogramação Celular/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Isoformas de Proteínas , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Transcriptoma/genética
16.
Nano Lett ; 23(17): 7876-7882, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638634

RESUMO

Guided 2D exciton-polaritons, resulting from the strong coupling of excitons in semiconductors with nonradiating waveguide modes, provide an attractive approach toward developing novel on-chip optical devices. These quasiparticles are characterized by long propagation distances and efficient nonlinear interactions but cannot be directly accessed from the free space. Here we demonstrate a powerful approach for probing and manipulating guided polaritons in a Ta2O5 slab integrated with a WS2 monolayer using evanescent coupling through a high-index solid immersion lens. Tuning the nanoscale lens-sample gap allows for extracting all of the intrinsic parameters of the system. We also demonstrate the transition from weak to strong coupling accompanied by the onset of the motional narrowing effect: with the increase of exciton-photon coupling strength, the inhomogeneous contribution to polariton line width, inherited from the exciton resonance, becomes fully lifted. Our results enable the development of integrated optics employing room-temperature exciton-polaritons in 2D semiconductor-based structures.

17.
Plant Biotechnol J ; 21(1): 136-149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148792

RESUMO

Detecting the simultaneous presence of a microRNA (miRNA) and a mRNA in a specific tissue can provide support for the prediction that the miRNA regulates the mRNA. Although two such methods have been developed for mammalian tissues, they have a low signal-noise ratio and/or poor resolution at the single-cell level. To overcome these drawbacks, we develop a method that uses sequence-specific miRNA-locked nucleic acid (LNA) and mRNA-LNA probes. Moreover, it augments the detection signal by rolling circle amplification, achieving a high signal-noise ratio at the single-cell level. Dot signals are counted for determining the expression levels of mRNA and miRNA molecules in specific cells. We show a high sequence specificity of our miRNA-LNA probe, revealing that it can discriminate single-base mismatches. Numerical quantification by our method is tested in transgenic rice lines with different gene expression levels. We conduct several applications. First, the spatial expression profiling of osa-miR156 and OsSPL12 in rice leaves reveals their specific expression in mesophyll cells. Second, studying rice and its mutant lines with our method reveals opposite expression patterns of miRNA and its target mRNA in tissues. Third, the dynamic expression profiles of ZmGRF8 and zma-miR396 during maize leaf development provide evidence that zma-miR396 regulates the preferential spatial expression of ZmGRF8 in bundle sheath cells. Finally, our method can be scaled up to simultaneously detect multiple miRNAs and mRNAs in a tissue. Thus, it is a sensitive and versatile technique for studying miRNA regulation of plant tissue development.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Mamíferos/genética , Mamíferos/metabolismo
18.
Plant Physiol ; 188(1): 442-459, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34747472

RESUMO

Chloroplasts are the sites for photosynthesis, and two Golden2-like factors act as transcriptional activators of chloroplast development in rice (Oryza sativa L.) and maize (Zea mays L.). Rice OsGLK1 and OsGLK2 are orthologous to maize ZmGLK1 (ZmG1) and ZmGLK2 (ZmG2), respectively. However, while rice OsGLK1 and OsGLK2 act redundantly to regulate chloroplast development in mesophyll cells, maize ZmG1 and ZmG2 are functionally specialized and expressed in different cell-specific manners. To boost rice chloroplast development and photosynthesis, we generated transgenic rice plants overexpressing ZmG1 and ZmG2, individually or simultaneously, with constitutive promoters (pZmUbi::ZmG1 and p35S::ZmG2) or maize promoters (pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2). Both ZmG1 and ZmG2 genes were highly expressed in transgenic rice leaves. Moreover, ZmG1 and ZmG2 showed coordinated expression in pZmG1::ZmG1/pZmG2::ZmG2 plants. All Golden2-like (GLK) transgenic plants had higher chlorophyll and protein contents, Rubisco activities and photosynthetic rates per unit leaf area in flag leaves. However, the highest grain yields occurred when maize promoters were used; pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2 transgenic plants showed increases in grain yield by 51%, 47%, and 70%, respectively. In contrast, the pZmUbi::ZmG1 plant produced smaller seeds without yield increases. Transcriptome analysis indicated that maize GLKs act as master regulators promoting the expression of both photosynthesis-related and stress-responsive regulatory genes in both rice shoot and root. Thus, by promoting these important functions under the control of their own promoters, maize GLK1 and GLK2 genes together dramatically improved rice photosynthetic performance and productivity. A similar approach can potentially improve the productivity of many other crops.


Assuntos
Cloroplastos/genética , Cloroplastos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Fotossíntese/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Zea mays/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Fatores de Transcrição/genética
19.
World J Urol ; 41(8): 2233-2241, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37382622

RESUMO

PURPOSE: To develop and validate an interpretable deep learning model to predict overall and disease-specific survival (OS/DSS) in clear cell renal cell carcinoma (ccRCC). METHODS: Digitised haematoxylin and eosin-stained slides from The Cancer Genome Atlas were used as a training set for a vision transformer (ViT) to extract image features with a self-supervised model called DINO (self-distillation with no labels). Extracted features were used in Cox regression models to prognosticate OS and DSS. Kaplan-Meier for univariable evaluation and Cox regression analyses for multivariable evaluation of the DINO-ViT risk groups were performed for prediction of OS and DSS. For validation, a cohort from a tertiary care centre was used. RESULTS: A significant risk stratification was achieved in univariable analysis for OS and DSS in the training (n = 443, log rank test, p < 0.01) and validation set (n = 266, p < 0.01). In multivariable analysis, including age, metastatic status, tumour size and grading, the DINO-ViT risk stratification was a significant predictor for OS (hazard ratio [HR] 3.03; 95%-confidence interval [95%-CI] 2.11-4.35; p < 0.01) and DSS (HR 4.90; 95%-CI 2.78-8.64; p < 0.01) in the training set but only for DSS in the validation set (HR 2.31; 95%-CI 1.15-4.65; p = 0.02). DINO-ViT visualisation showed that features were mainly extracted from nuclei, cytoplasm, and peritumoural stroma, demonstrating good interpretability. CONCLUSION: The DINO-ViT can identify high-risk patients using histological images of ccRCC. This model might improve individual risk-adapted renal cancer therapy in the future.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Modelos de Riscos Proporcionais , Fatores de Risco , Endoscopia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA