Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731860

RESUMO

The COVID-19 pandemic has underscored the critical need for the advancement of diagnostic and therapeutic platforms. These platforms rely on the rapid development of molecular binders that should facilitate surveillance and swift intervention against viral infections. In this study, we have evaluated by three independent research groups the binding characteristics of various published RNA and DNA aptamers targeting the spike protein of the SARS-CoV-2 virus. For this comparative analysis, we have employed different techniques such as biolayer interferometry (BLI), enzyme-linked oligonucleotide assay (ELONA), and flow cytometry. Our data show discrepancies in the reported specificity and affinity among several of the published aptamers and underline the importance of standardized methods, the impact of biophysical techniques, and the controls used for aptamer characterization. We expect our results to contribute to the selection and application of suitable aptamers for the detection of SARS-CoV-2.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/química , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/efeitos dos fármacos , Humanos , COVID-19/virologia , COVID-19/metabolismo , Interferometria/métodos , Citometria de Fluxo/métodos
2.
ACS Sens ; 9(2): 753-758, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253513

RESUMO

Detection of metabolites in real time and in whole cells requires effective molecular sensors. In this regard, fluorogenic light-up RNAs have recently become important tools for small-molecule detection in cells. However, the construction of light-up RNA sensors is an arduous task that requires structural knowledge of both the sensor and reporter RNA. De novo strategies for selecting sensors from RNA libraries are limited and are mostly restricted to known aptamers and riboswitches. Here, we provide a solution to this problem by developing a capture-SELEX variant that allows the obtained libraries and aptamers to be linked to fluorogenic RNAs in a modular and allosteric manner. The approach is generally applicable and allows for rapid modular allosteric assembly with green- or red-shifted fluorogenic RNAs.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , RNA/química , Aptâmeros de Nucleotídeos/química
3.
Adv Sci (Weinh) ; 11(12): e2304519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38227373

RESUMO

The regulation of gene expression by light enables the versatile, spatiotemporal manipulation of biological function in bacterial and mammalian cells. Optoribogenetics extends this principle by molecular RNA devices acting on the RNA level whose functions are controlled by the photoinduced interaction of a light-oxygen-voltage photoreceptor with cognate RNA aptamers. Here light-responsive ribozymes, denoted optozymes, which undergo light-dependent self-cleavage and thereby control gene expression are described. This approach transcends existing aptamer-ribozyme chimera strategies that predominantly rely on aptamers binding to small molecules. The optozyme method thus stands to enable the graded, non-invasive, and spatiotemporally resolved control of gene expression. Optozymes are found efficient in bacteria and mammalian cells and usher in hitherto inaccessible optoribogenetic modalities with broad applicability in synthetic and systems biology.


Assuntos
RNA Catalítico , RNA , Animais , Motivos de Nucleotídeos , RNA/genética , RNA Catalítico/química , RNA Catalítico/genética , RNA Catalítico/metabolismo , Bactérias/metabolismo , Expressão Gênica , Mamíferos/metabolismo
4.
J Agric Food Chem ; 72(32): 18225-18233, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39079057

RESUMO

Allergen detection methods support food labeling and quality assessment at the allergen component level of allergen preparations used for allergy diagnosis and immunotherapy (AIT). Commonly applied enzyme-linked immunosorbent assay (ELISA) requires animal antibodies but potentially shows batch variations. We developed synthetic aptamers as alternative binders in allergen detection to meet the replacement, reduction, and refinement (3R) principle on animal protection in science. ssDNA aptamers were specifically selected against the major peanut allergen Ara h 1 and identified by next-generation sequencing. Application in various detection systems (ELISA-like assays, western blot, and surface plasmon resonance) was demonstrated. The ELISA-like assay comprised a sensitivity of 10 ng/mL Ara h 1, comparable to published antibody-based ELISA, and allowed Ara h 1 detection in various peanut flours, similar to those used in peanut AIT as well as in processed food. This ELISA-like aptamer-based assay proofs antibody-free allergen detection for food labeling or quality assessment of diagnostic and therapeutic allergen products.


Assuntos
Alérgenos , Antígenos de Plantas , Aptâmeros de Nucleotídeos , Arachis , Ensaio de Imunoadsorção Enzimática , Proteínas de Plantas , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/imunologia , Arachis/química , Arachis/imunologia , Antígenos de Plantas/imunologia , Antígenos de Plantas/análise , Antígenos de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Alérgenos/imunologia , Alérgenos/análise , Hipersensibilidade a Amendoim/imunologia , Glicoproteínas/imunologia , Glicoproteínas/química , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Humanos , Técnica de Seleção de Aptâmeros/métodos
5.
Mol Ther Nucleic Acids ; 35(3): 102254, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39071952

RESUMO

Allergic contact dermatitis is a prevalent occupational disease with limited therapeutic options. The chemokine CCL22, a ligand of the chemokine receptor CCR4, directs the migration of immune cells. Here, it is shown that genetic deficiency of CCL22 effectively ameliorated allergic reactions in contact hypersensitivity (CHS), a commonly used mouse model of allergic contact dermatitis. For the pharmacological inhibition of CCL22, DNA aptamers specific for murine CCL22 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). Nine CCL22-binding aptamers were initially selected and functionally tested in vitro. The 29-nt DNA aptamer AJ102.29m profoundly inhibited CCL22-dependent T cell migration and did not elicit undesired Toll-like receptor-dependent immune activation. AJ102.29m efficiently ameliorated CHS in vivo after systemic application. Moreover, CHS-associated allergic symptoms were also reduced following topical application of the aptamer on the skin. Microscopic analysis of skin treated with AJ102.29m ex vivo demonstrated that the aptamer could penetrate into the epidermis and dermis. The finding that epicutaneous application of the aptamer AJ102.29m in a cream was as effective in suppressing the allergic reaction as intraperitoneal injection paves the way for therapeutic use of aptamers beyond the current routes of systemic administration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA