Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome ; 59(7): 459-72, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27253730

RESUMO

Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous underutilized legume that has the potential to improve food security in semi-arid Africa. So far, there are a lack of reports of controlled breeding populations that could be used for variety development and genetic studies. We report here the construction of the first genetic linkage map of bambara groundnut using a F3 population derived from a "narrow" cross between two domesticated landraces (Tiga Nicuru and DipC) with marked divergence in phenotypic traits. The map consists of 238 DArT array and SSR based markers in 21 linkage groups with a total genetic distance of 608.3 cM. In addition, phenotypic traits were evaluated for a quantitative trait loci (QTL) analysis over two generations. A total of 36 significant QTLs were detected for 19 traits. The phenotypic effect explained by a single QTL ranged from 11.6% to 49.9%. Two stable QTLs were mapped for internode length and growth habit. The identified QTLs could be useful for marker-assisted selection in bambara groundnut breeding programmes.


Assuntos
Fabaceae/genética , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Análise por Conglomerados , Cruzamentos Genéticos , Fabaceae/crescimento & desenvolvimento , Ligação Genética , Marcadores Genéticos , Variação Genética , Genótipo , Fenótipo , Polimorfismo Genético , Locos de Características Quantitativas , Especificidade da Espécie
2.
PLoS One ; 11(2): e0148771, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859686

RESUMO

Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.


Assuntos
Fabaceae/crescimento & desenvolvimento , Fabaceae/genética , Genes de Plantas , Metabolismo dos Carboidratos/genética , Temperatura Baixa/efeitos adversos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Fabaceae/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Metabolismo dos Lipídeos/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Estresse Fisiológico , Fatores de Transcrição/genética
3.
BMC Res Notes ; 3: 245, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20920212

RESUMO

BACKGROUND: Meiotic recombination in eukaryotes requires two homologues of the E. coli RecA proteins: Rad51 and Dmc1. Both proteins play important roles in the binding of single stranded DNA, homology search, strand invasion and strand exchange. Meiotic recombination has been well studied in Arabidopsis, rice, maize and the orthologues of RAD51 and DMC1 have been characterized. However genetic analysis of the RAD51 and DMC1 genes in bread wheat has been hampered due to the absence of complete sequence information and because of the existence of multiple copies of each gene in the hexaploid wheat genome. FINDINGS: In this study we have identified that TaRAD51 and TaDMC1 homoeologues are located on group 7 and group 5 chromosomes of hexaploid wheat, respectively. Comparative sequence analysis of cDNA derived from the TaRAD51 and TaDMC1 homoeologues revealed limited sequence divergence at both the nucleotide and the amino acid level. Indeed, comparisons between the predicted amino acid sequences of TaRAD51 and TaDMC1 and those of other eukaryotes reveal a high degree of evolutionary conservation. Despite the high degree of sequence conservation at the nucleotide level, genome-specific primers for cDNAs of TaRAD51 and TaDMC1 were developed to evaluate expression patterns of individual homoeologues during meiosis. QRT-PCR analysis showed that expression of the TaRAD51 and TaDMC1 cDNA homoeologues was largely restricted to meiotic tissue, with elevated levels observed during the stages of prophase I when meiotic recombination occurs. All three homoeologues of both strand-exchange proteins (TaRAD51 and TaDMC1) are expressed in wheat. CONCLUSIONS: Bread wheat contains three expressed copies of each of the TaRAD51 and TaDMC1 homoeologues. While differences were detected between the three cDNA homoeologues of TaRAD51 as well as the three homoeologues of TaDMC1, it is unlikely that the predicted amino acid substitutions would have an effect on the protein structure, based on our three-dimensional structure prediction analyses. There are differences in the levels of expression of the three homoeologues of TaRAD51 and TaDMC1 as determined by QRT-PCR and if these differences are reflected at the protein level, bread wheat may be more dependent upon a particular homoeologue to achieve full fertility than all three equally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA