Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(48): 19039-19048, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36413487

RESUMO

Energy storage is a vital aspect for the successful implementation of renewable energy resources on a global scale. Herein, we investigated the redox cycle of nickel(II) bis(diethyldithiocarbamate), NiII(dtc)2, for potential use as a multielectron storage catholyte in nonaqueous redox flow batteries (RFBs). Previous studies have shown that the unique redox cycle of NiII(dtc)2 offers 2e- chemistry upon oxidation from NiII → NiIV but 1e- chemistry upon reduction from NiIV → NiIII → NiII. Electrochemical experiments presented here show that the addition of as little as 10 mol % ZnII(ClO4)2 to the electrolyte consolidates the two 1e- reduction peaks into a single 2e- reduction where [NiIV(dtc)3]+ is reduced directly to NiII(dtc)2. This catalytic enhancement is believed to be due to ZnII removal of a dtc- ligand from a NiIII(dtc)3 intermediate, resulting in more facile reduction to NiII(dtc)2. The addition of ZnII also improves the 2e- oxidation, shifting the anodic peak negative and decreasing the 2e- peak separation. H-cell cycling experiments showed that 97% Coulombic efficiency and 98% charge storage efficiency was maintained for 50 cycles over 25 h using 0.1 M ZnII(ClO4)2 as the supporting electrolyte. If ZnII(ClO4)2 was replaced with TBAPF6 in the electrolyte, the Coulombic efficiency fell to 78%. The use of ZnII to increase the reversibility of 2e- transfer is a promising result that points to the ability to use nickel dithiocarbonates for multielectron storage in RFBs.

2.
Inorg Chem ; 60(17): 13388-13399, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34403586

RESUMO

The unique redox cycle of NiII(dtc)2, where dtc- is N,N-diethyldithiocarbamate, in acetonitrile displays 2e- redox chemistry upon oxidation from NiII(dtc)2 → [NiIV(dtc)3]+ but 1e- redox chemistry upon reduction from [NiIV(dtc)3]+ → NiIII(dtc)3 → NiII(dtc)2. The underlying reasons for this cycle lie in the structural changes that occur between four-coordinate NiII(dtc)2 and six-coordinate [NiIV(dtc)3]+. Cyclic voltammetry (CV) experiments show that these 1e- and 2e- pathways can be controlled by the addition of pyridine-based ligands (L) to the electrolyte solution. Specifically, the addition of these ligands resulted in a 1e- ligand-coupled electron transfer (LCET) redox wave, which produced a mixture of pyridine-bound Ni(III) complexes, [NiIII(dtc)2(L)]+, and [NiIII(dtc)2(L)2]+. Although the complexes could not be isolated, electron paramagnetic resonance (EPR) measurements using a chemical oxidant in the presence of 4-methoxypyridine confirmed the formation of trans-[NiIII(dtc)2(L)2]+. Density functional theory calculations were also used to support the formation of pyridine coordinated Ni(III) complexes through structural optimization and calculation of EPR parameters. The reversibility of the LCET process was found to be dependent on both the basicity of the pyridine ligand and the scan rate of the CV experiment. For strongly basic pyridines (e.g., 4-methoxypyridine) and/or fast scan rates, high reversibility was achieved, allowing [NiIII(dtc)2(L)x]+ to be reduced directly back to NiII(dtc)2 + xL. For weakly basic pyridines (e.g., 3-bromopyridine) and/or slow scan rates, [NiIII(dtc)2(L)x]+ decayed irreversibly to form [NiIV(dtc)3]+. Detailed kinetics studies using CV reveal that [NiIII(dtc)2(L)]+ and [NiIII(dtc)2(L)2]+ decay by parallel pathways due to a small equilibrium between the two species. The rate constants for ligand dissociation ([NiIII(dtc)2(L)2]+ → [NiIII(dtc)2(L)]+ + L) along with decomposition of [NiIII(dtc)2(L)]+ and [NiIII(dtc)2(L)2]+ species were found to increase with the electron-withdrawing character of the pyridine ligand, indicating pyridine dissociation is likely the rate-limiting step for decomposition of these complexes. These studies establish a general trend for kinetically trapping 1e- intermediates along a 2e- oxidation path.

3.
ACS Mater Au ; 3(5): 557-568, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38089091

RESUMO

Redox flow batteries (RFBs) are of recent interest to store harvested renewable energy for improving grid reliability and utilization. In this study, we synthesized and characterized a series of phenyl acrylate-based UV-cross-linked anion exchange membranes (AEMs) and explored the performance of these AEMs in a model non-aqueous RFB under model conditions. Infrared spectroscopy was utilized to confirm the incorporation of ion carriers in the phenyl acrylate backbone. The electrochemical performance was compared with the commercial Fumasep membrane Fuma-375 based on high stability in non-aqueous solvents, high permeability to the charge-carrying ion, low resistance, low crossover of the redox-active molecules, and low cost. Our results show 55% total capacity retention through 1000 charge/discharge cycles because of low crossover as compared to the Fumasep commercial membrane which retained only 28% capacity. This result is promising in understanding and developing next-generation AEMs for non-aqueous RFBs and other electrochemical systems utilizing organic solvents.

4.
Dalton Trans ; 50(3): 926-935, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33350418

RESUMO

Two NNN pincer complexes of Cu(ii) and Ni(ii) with BPIMe- [BPIMe- = 1,3-bis((6-methylpyridin-2-yl)imino)isoindolin-2-ide] have been prepared and characterized structurally, spectroscopically, and electrochemically. The single crystal structures of the two complexes confirmed their distorted trigonal bipyramidal geometry attained by three equatorial N-atoms from the ligand and two axially positioned water molecules to give [Cu(BPIMe)(H2O)2]ClO4 and [Ni(BPIMe)(H2O)2]ClO4. Electrochemical studies of Cu(ii) and Ni(ii) complexes have been performed in acetonitrile to identify metal-based and ligand-based redox activity. When subjected to a saturated CO2 atmosphere, both complexes displayed catalytic activity for the reduction of CO2 with the Cu(ii) complex displaying higher activity than the Ni(ii) analogue. However, both complexes were shown to decompose into catalytically active heterogeneous materials on the electrode surface over extended reductive electrolysis periods. Surface analysis of these materials using energy dispersive spectroscopy as well as their physical appearance suggests the reductive deposition of copper and nickel metal on the electrode surface. Electrocatalysis and decomposition are proposed to be triggered by ligand reduction, where complex stability is believed to be tied to fluxional ligand coordination in the reduced state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA