Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 139(20): 3880-90, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22951641

RESUMO

DNA replication origin activity changes during development. Chromatin modifications are known to influence the genomic location of origins and the time during S phase that they initiate replication in different cells. However, how chromatin regulates origins in concert with cell differentiation remains poorly understood. Here, we use developmental gene amplification in Drosophila ovarian follicle cells as a model to investigate how chromatin modifiers regulate origins in a developmental context. We find that the histone acetyltransferase (HAT) Chameau (Chm) binds to amplicon origins and is partially required for their function. Depletion of Chm had relatively mild effects on origins during gene amplification and genomic replication compared with previous knockdown of its ortholog HBO1 in human cells, which has severe effects on origin function. We show that another HAT, CBP (Nejire), also binds amplicon origins and is partially required for amplification. Knockdown of Chm and CBP together had a more severe effect on nucleosome acetylation and amplicon origin activity than knockdown of either HAT alone, suggesting that these HATs collaborate in origin regulation. In addition to their local function at the origin, we show that Chm and CBP also globally regulate the developmental transition of follicle cells into the amplification stages of oogenesis. Our results reveal a complexity of origin epigenetic regulation by multiple HATs during development and suggest that chromatin modifiers are a nexus that integrates differentiation and DNA replication programs.


Assuntos
Acetiltransferases/metabolismo , Replicação do DNA , Proteínas de Drosophila/metabolismo , Histona Acetiltransferases/metabolismo , Oogênese , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Amplificação de Genes , Histona Acetiltransferases/genética , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Origem de Replicação , Fatores de Transcrição de p300-CBP/genética
2.
Mol Cell Biol ; 26(5): 1955-66, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16479013

RESUMO

The HMR-E silencer is a DNA element that directs the formation of silent chromatin at the HMRa locus in Saccharomyces cerevisiae. Sir1p is one of four Sir proteins required for silent chromatin formation at HMRa. Sir1p functions by binding the origin recognition complex (ORC), which binds to HMR-E, and recruiting the other Sir proteins (Sir2p to -4p). ORCs also bind to hundreds of nonsilencer positions distributed throughout the genome, marking them as replication origins, the sites for replication initiation. HMR-E also acts as a replication origin, but compared to many origins in the genome, it fires extremely inefficiently and late during S phase. One postulate to explain this observation is that ORC's role in origin firing is incompatible with its role in binding Sir1p and/or the formation of silent chromatin. Here we examined a mutant HMR-E silencer and fusions between robust replication origins and HMR-E for HMRa silencing, origin firing, and replication timing. Origin firing within HMRa and from the HMR-E silencer itself could be significantly enhanced, and the timing of HMRa replication during an otherwise normal S phase advanced, without a substantial reduction in SIR1-dependent silencing. However, although the robust origin/silencer fusions silenced HMRa quite well, they were measurably less effective than a comparable silencer containing HMR-E's native ORC binding site.


Assuntos
Inativação Gênica , Complexo de Reconhecimento de Origem/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Replicação do DNA/genética , Regulação Fúngica da Expressão Gênica , Mutação , Complexo de Reconhecimento de Origem/genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética
3.
Genetics ; 173(2): 541-55, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16547092

RESUMO

Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved approximately 40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called "motif N." BRCT motifs encode approximately 100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved approximately 100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p-Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Dano ao DNA , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/genética , Genes Fúngicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos
4.
Mol Cell Biol ; 24(2): 774-86, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14701749

RESUMO

Sir1p is one of four SIR (silent information regulator) proteins required for silencing the cryptic mating-type locus HMRa in the budding yeast Saccharomyces cerevisiae. A Sir1p interaction with Orc1p, the largest subunit of the origin recognition complex (ORC), is critical for Sir1p's ability to bind HMRa and function in the formation of silent chromatin. Here we show that a discrete domain within Sir1p, the ORC interaction region (OIR), was necessary and sufficient for a Sir1p-ORC interaction. The OIR contains the originally defined silencer recognition-defective region as well as additional amino acids. In addition, a Sir1p-Sir4p interaction required a larger region of Sir1p that included the OIR. Amino acid substitutions causing defects in either a Sir1p-Orc1p or a Sir1p-Sir4p interaction reduced HMRa silencing and Sir1p binding to HMRa in chromatin. These data support a model in which Sir1p's association with HMRa is mediated by separable Sir1p-ORC and Sir1p-Sir4p interactions requiring a common Sir1p domain, and they indicate that a Sir1p-ORC interaction is restricted to silencers, at least in part, through interactions with Sir4p.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Sequência Conservada , Proteínas Fúngicas/genética , Inativação Gênica , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Modelos Biológicos , Dados de Sequência Molecular , Complexo de Reconhecimento de Origem , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA