Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cryst Growth Des ; 24(2): 613-626, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38250542

RESUMO

The performance of crystalline organic semiconductors depends on the solid-state structure, especially the orientation of the conjugated components with respect to device platforms. Often, crystals can be engineered by modifying chromophore substituents through synthesis. Meanwhile, dissymetry is necessary for high-tech applications like chiral sensing, optical telecommunications, and data storage. The synthesis of dissymmetric molecules is a labor-intensive exercise that might be undermined because common processing methods offer little control over orientation. Crystal twisting has emerged as a generalizable method for processing organic semiconductors and offers unique advantages, such as patterning of physical and chemical properties and chirality that arises from mesoscale twisting. The precession of crystal orientations can enrich performance because achiral molecules in achiral space groups suddenly become candidates for the aforementioned technologies that require dissymetry.

2.
Chem Mater ; 35(20): 8599-8606, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901143

RESUMO

Tetrathiafulvalene (TTF) crystals grown from the melt are organized as spherulites in which helicoidal fibrils growing radially from the nucleation center twist in concert with one another. Alternating bright and dark concentric bands are apparent when films are viewed between crossed polarizers, indicating an alternating pattern of crystallographic faces exposed at the film surface. Band-dependent reorganization of the TTF crystals was observed during exposure to methanol vapor. Crystalline growth appears on bright bands at the expense of the dark bands. After a 24 h period of exposure to methanol vapor, the original spherulites were completely restructured, and the films comprise isolated, concentric circles of crystallites whose orientations are determined by the initial TTF crystal fibril orientation. While the surface of these outgrowths appears faceted and smooth, cross-sectional SEM images revealed a semiporous inner structure, suggesting solvent-vapor-induced recrystallization. Collectively, these results show that crystal twisting can be used to rhythmically redistribute material. Crystal twisting is a common and often controllable phenomenon independent of molecular or crystal structure and therefore offers a generalizable path to spontaneous pattern formation in a wide range of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA