Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Brain ; 146(1): 135-148, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104842

RESUMO

Responding to threat is under strong survival pressure, promoting the evolution of systems highly optimized for the task. Though the amygdala is implicated in 'detecting' threat, its role in the action that immediately follows-'orienting'-remains unclear. Critical to mounting a targeted response, such early action requires speed, accuracy, and resilience optimally achieved through conserved, parsimonious, dedicated systems, insured against neural loss by a parallelized functional organization. These characteristics tend to conceal the underlying substrate not only from correlative methods but also from focal disruption over time scales long enough for compensatory adaptation to take place. In a study of six patients with intracranial electrodes temporarily implanted for the clinical evaluation of focal epilepsy, we investigated gaze orienting to fear during focal, transient, unilateral direct electrical disruption of the amygdala. We showed that the amygdala is necessary for rapid gaze shifts towards faces presented in the contralateral hemifield regardless of their emotional expression, establishing its functional lateralization. Behaviourally dissociating the location of presented fear from the direction of the response, we implicated the amygdala not only in detecting contralateral faces, but also in automatically orienting specifically towards fearful ones. This salience-specific role was demonstrated within a drift-diffusion model of action to manifest as an orientation bias towards the location of potential threat. Pixel-wise analysis of target facial morphology revealed scleral exposure as its primary driver, and induced gamma oscillations-obtained from intracranial local field potentials-as its time-locked electrophysiological correlate. The amygdala is here reconceptualized as a functionally lateralized instrument of early action, reconciling previous conflicting accounts confined to detection, and revealing a neural organisation analogous to the superior colliculus, with which it is phylogenetically kin. Greater clarity on its role has the potential to guide therapeutic resection, still frequently complicated by impairments of cognition and behaviour related to threat, and inform novel focal stimulation techniques for the management of neuropsychiatric conditions.


Assuntos
Tonsila do Cerebelo , Medo , Humanos , Medo/fisiologia , Medo/psicologia , Cognição , Expressão Facial , Imageamento por Ressonância Magnética , Estimulação Luminosa
2.
Brain ; 146(6): 2377-2388, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062539

RESUMO

Around 50% of patients undergoing frontal lobe surgery for focal drug-resistant epilepsy become seizure free post-operatively; however, only about 30% of patients remain seizure free in the long-term. Early seizure recurrence is likely to be caused by partial resection of the epileptogenic lesion, whilst delayed seizure recurrence can occur even if the epileptogenic lesion has been completely excised. This suggests a coexistent epileptogenic network facilitating ictogenesis in close or distant dormant epileptic foci. As thalamic and striatal dysregulation can support epileptogenesis and disconnection of cortico-thalamostriatal pathways through hemispherotomy or neuromodulation can improve seizure outcome regardless of focality, we hypothesize that projections from the striatum and the thalamus to the cortex may contribute to this common epileptogenic network. To this end, we retrospectively reviewed a series of 47 consecutive individuals who underwent surgery for drug-resistant frontal lobe epilepsy. We performed voxel-based and tractography disconnectome analyses to investigate shared patterns of disconnection associated with long-term seizure freedom. Seizure freedom after 3 and 5 years was independently associated with disconnection of the anterior thalamic radiation and anterior cortico-striatal projections. This was also confirmed in a subgroup of 29 patients with complete resections, suggesting these pathways may play a critical role in supporting the development of novel epileptic networks. Our study indicates that network dysfunction in frontal lobe epilepsy may extend beyond the resection and putative epileptogenic zone. This may be critical in the pathogenesis of delayed seizure recurrence as thalamic and striatal networks may promote epileptogenesis and disconnection may underpin long-term seizure freedom.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Frontal , Humanos , Epilepsia do Lobo Frontal/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Eletroencefalografia , Convulsões/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia
3.
Brain ; 146(6): 2389-2398, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36415957

RESUMO

More than half of adults with epilepsy undergoing resective epilepsy surgery achieve long-term seizure freedom and might consider withdrawing antiseizure medications. We aimed to identify predictors of seizure recurrence after starting postoperative antiseizure medication withdrawal and develop and validate predictive models. We performed an international multicentre observational cohort study in nine tertiary epilepsy referral centres. We included 850 adults who started antiseizure medication withdrawal following resective epilepsy surgery and were free of seizures other than focal non-motor aware seizures before starting antiseizure medication withdrawal. We developed a model predicting recurrent seizures, other than focal non-motor aware seizures, using Cox proportional hazards regression in a derivation cohort (n = 231). Independent predictors of seizure recurrence, other than focal non-motor aware seizures, following the start of antiseizure medication withdrawal were focal non-motor aware seizures after surgery and before withdrawal [adjusted hazard ratio (aHR) 5.5, 95% confidence interval (CI) 2.7-11.1], history of focal to bilateral tonic-clonic seizures before surgery (aHR 1.6, 95% CI 0.9-2.8), time from surgery to the start of antiseizure medication withdrawal (aHR 0.9, 95% CI 0.8-0.9) and number of antiseizure medications at time of surgery (aHR 1.2, 95% CI 0.9-1.6). Model discrimination showed a concordance statistic of 0.67 (95% CI 0.63-0.71) in the external validation cohorts (n = 500). A secondary model predicting recurrence of any seizures (including focal non-motor aware seizures) was developed and validated in a subgroup that did not have focal non-motor aware seizures before withdrawal (n = 639), showing a concordance statistic of 0.68 (95% CI 0.64-0.72). Calibration plots indicated high agreement of predicted and observed outcomes for both models. We show that simple algorithms, available as graphical nomograms and online tools (predictepilepsy.github.io), can provide probabilities of seizure outcomes after starting postoperative antiseizure medication withdrawal. These multicentre-validated models may assist clinicians when discussing antiseizure medication withdrawal after surgery with their patients.


Assuntos
Epilepsias Parciais , Epilepsia Generalizada , Epilepsia , Humanos , Adulto , Anticonvulsivantes/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia/cirurgia , Convulsões/tratamento farmacológico , Epilepsia Generalizada/tratamento farmacológico
4.
Cereb Cortex ; 33(13): 8792-8802, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37160345

RESUMO

Hippocampal theta oscillations have been implicated in associative memory in humans. However, findings from electrophysiological studies using scalp electroencephalography or magnetoencephalography, and those using intracranial electroencephalography are mixed. Here we asked 10 pre-surgical epilepsy patients undergoing intracranial electroencephalography recording, along with 21 participants undergoing magnetoencephalography recordings, to perform an associative memory task, and examined whether hippocampal theta activity during encoding was predictive of subsequent associative memory performance. Across the intracranial electroencephalography and magnetoencephalography studies, we observed that theta power in the hippocampus increased during encoding, and that this increase differed as a function of subsequent memory, with greater theta activity for pairs that were successfully retrieved in their entirety compared with those that were not remembered. This helps to clarify the role of theta oscillations in associative memory formation in humans, and further, demonstrates that findings in epilepsy patients undergoing intracranial electroencephalography recordings can be extended to healthy participants undergoing magnetoencephalography recordings.


Assuntos
Epilepsia , Ritmo Teta , Humanos , Ritmo Teta/fisiologia , Hipocampo/fisiologia , Eletroencefalografia , Rememoração Mental/fisiologia , Epilepsia/cirurgia
5.
Ann Neurol ; 91(1): 131-144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741484

RESUMO

OBJECTIVE: Postoperative memory decline is an important consequence of anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), and the extent of resection may be a modifiable factor. This study aimed to define optimal resection margins for cognitive outcome while maintaining a high rate of postoperative seizure freedom. METHODS: This cohort study evaluated the resection extent on postoperative structural MRI using automated voxel-based methods and manual measurements in 142 consecutive patients with unilateral drug refractory TLE (74 left, 68 right TLE) who underwent standard ATLR. RESULTS: Voxel-wise analyses revealed that postsurgical verbal memory decline correlated with resections of the posterior hippocampus and inferior temporal gyrus, whereas larger resections of the fusiform gyrus were associated with worsening of visual memory in left TLE. Limiting the posterior extent of left hippocampal resection to 55% reduced the odds of significant postoperative verbal memory decline by a factor of 8.1 (95% CI 1.5-44.4, p = 0.02). Seizure freedom was not related to posterior resection extent, but to the piriform cortex removal after left ATLR. In right TLE, variability of the posterior extent of resection was not associated with verbal and visual memory decline or seizures after surgery. INTERPRETATION: The extent of surgical resection is an independent and modifiable risk factor for cognitive decline and seizures after left ATLR. Adapting the posterior extent of left ATLR might optimize postoperative outcome, with reduced risk of memory impairment while maintaining comparable seizure-freedom rates. The current, more lenient, approach might be appropriate for right ATLR. ANN NEUROL 2022;91:131-144.


Assuntos
Lobectomia Temporal Anterior/efeitos adversos , Lobectomia Temporal Anterior/métodos , Epilepsia do Lobo Temporal/cirurgia , Complicações Pós-Operatórias/prevenção & controle , Adolescente , Adulto , Estudos de Coortes , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/etiologia , Convulsões/etiologia , Convulsões/prevenção & controle , Adulto Jovem
6.
Epilepsia ; 64(8): 2070-2080, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37226553

RESUMO

OBJECTIVE: Identifying abnormalities on interictal intracranial electroencephalogram (iEEG), by comparing patient data to a normative map, has shown promise for the localization of epileptogenic tissue and prediction of outcome. The approach typically uses short interictal segments of approximately 1 min. However, the temporal stability of findings has not been established. METHODS: Here, we generated a normative map of iEEG in nonpathological brain tissue from 249 patients. We computed regional band power abnormalities in a separate cohort of 39 patients for the duration of their monitoring period (.92-8.62 days of iEEG data, mean = 4.58 days per patient, >4800 hours recording). To assess the localizing value of band power abnormality, we computed D RS -a measure of how different the surgically resected and spared tissue was in terms of band power abnormalities-over time. RESULTS: In each patient, the D RS value was relatively consistent over time. The median D RS of the entire recording period separated seizure-free (International League Against Epilepsy [ILAE] = 1) and not-seizure-free (ILAE > 1) patients well (area under the curve [AUC] = .69). This effect was similar interictally (AUC = .69) and peri-ictally (AUC = .71). SIGNIFICANCE: Our results suggest that band power abnormality D_RS, as a predictor of outcomes from epilepsy surgery, is a relatively robust metric over time. These findings add further support for abnormality mapping of neurophysiology data during presurgical evaluation.


Assuntos
Eletrocorticografia , Epilepsia , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Mapeamento Encefálico/métodos
7.
Brain ; 145(3): 939-949, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35075485

RESUMO

The identification of abnormal electrographic activity is important in a wide range of neurological disorders, including epilepsy for localizing epileptogenic tissue. However, this identification may be challenging during non-seizure (interictal) periods, especially if abnormalities are subtle compared to the repertoire of possible healthy brain dynamics. Here, we investigate if such interictal abnormalities become more salient by quantitatively accounting for the range of healthy brain dynamics in a location-specific manner. To this end, we constructed a normative map of brain dynamics, in terms of relative band power, from interictal intracranial recordings from 234 participants (21 598 electrode contacts). We then compared interictal recordings from 62 patients with epilepsy to the normative map to identify abnormal regions. We proposed that if the most abnormal regions were spared by surgery, then patients would be more likely to experience continued seizures postoperatively. We first confirmed that the spatial variations of band power in the normative map across brain regions were consistent with healthy variations reported in the literature. Second, when accounting for the normative variations, regions that were spared by surgery were more abnormal than those resected only in patients with persistent postoperative seizures (t = -3.6, P = 0.0003), confirming our hypothesis. Third, we found that this effect discriminated patient outcomes (area under curve 0.75 P = 0.0003). Normative mapping is a well-established practice in neuroscientific research. Our study suggests that this approach is feasible to detect interictal abnormalities in intracranial EEG, and of potential clinical value to identify pathological tissue in epilepsy. Finally, we make our normative intracranial map publicly available to facilitate future investigations in epilepsy and beyond.


Assuntos
Eletrocorticografia , Epilepsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Epilepsia/cirurgia , Humanos , Convulsões/patologia , Convulsões/cirurgia
8.
Hippocampus ; 31(2): 213-220, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33263940

RESUMO

Hippocampal theta oscillations have been implicated in spatial memory function in both rodents and humans. What is less clear is how hippocampal theta interacts with higher frequency oscillations to support long-term memory. Here we asked 10 presurgical epilepsy patients undergoing intracranial EEG recording to perform a long-term spatial memory task in desktop virtual reality and found that increased theta power in two discrete bands ("low" 2-5 Hz and "high" 6-11 Hz) during cued retrieval was associated with improved task performance. Similarly, increased coupling between "low" theta phase and gamma amplitude during the same period was associated with improved task performance. Finally, low and high gamma amplitude appeared to peak at different phases of the theta cycle; providing a novel connection between human hippocampal function and rodent data. These results help to elucidate the role of theta oscillations and theta-gamma phase-amplitude coupling in human long-term memory.


Assuntos
Memória Espacial , Ritmo Teta , Eletrocorticografia , Hipocampo , Humanos , Memória de Longo Prazo
9.
Brain ; 143(11): 3262-3272, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33179036

RESUMO

Focal epilepsy in adults is associated with progressive atrophy of the cortex at a rate more than double that of normal ageing. We aimed to determine whether successful epilepsy surgery interrupts progressive cortical thinning. In this longitudinal case-control neuroimaging study, we included subjects with unilateral temporal lobe epilepsy (TLE) before (n = 29) or after (n = 56) anterior temporal lobe resection and healthy volunteers (n = 124) comparable regarding age and sex. We measured cortical thickness on paired structural MRI scans in all participants and compared progressive thinning between groups using linear mixed effects models. Compared to ageing-related cortical thinning in healthy subjects, we found progressive cortical atrophy on vertex-wise analysis in TLE before surgery that was bilateral and localized beyond the ipsilateral temporal lobe. In these regions, we observed accelerated annualized thinning in left (left TLE 0.0192 ± 0.0014 versus healthy volunteers 0.0032 ± 0.0013 mm/year, P < 0.0001) and right (right TLE 0.0198 ± 0.0016 versus healthy volunteers 0.0037 ± 0.0016 mm/year, P < 0.0001) presurgical TLE cases. Cortical thinning in these areas was reduced after surgical resection of the left (0.0074 ± 0.0016 mm/year, P = 0.0006) or right (0.0052 ± 0.0020 mm/year, P = 0.0006) anterior temporal lobe. Directly comparing the post- versus presurgical TLE groups on vertex-wise analysis, the areas of postoperatively reduced thinning were in both hemispheres, particularly, but not exclusively, in regions that were affected preoperatively. Participants who remained completely seizure-free after surgery had no more progressive thinning than that observed during normal ageing. Those with postoperative seizures had small areas of continued accelerated thinning after surgery. Thus, successful epilepsy surgery prevents progressive cortical atrophy that is observed in TLE and may be potentially neuroprotective. This effect was more pronounced in those who remained seizure-free after temporal lobe resection, normalizing the rate of atrophy to that of normal ageing. These results provide evidence of epilepsy surgery preventing further cerebral damage and provide incentives for offering early surgery in refractory TLE.


Assuntos
Afinamento Cortical Cerebral/prevenção & controle , Epilepsia do Lobo Temporal/cirurgia , Procedimentos Neurocirúrgicos/métodos , Adulto , Idoso , Atrofia , Estudos de Casos e Controles , Afinamento Cortical Cerebral/diagnóstico por imagem , Afinamento Cortical Cerebral/patologia , Estudos de Coortes , Progressão da Doença , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Feminino , Lateralidade Funcional , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Estudos Prospectivos , Convulsões/etiologia , Convulsões/prevenção & controle , Adulto Jovem
10.
Br J Neurosurg ; : 1-6, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406102

RESUMO

BACKGROUND: The piriform cortex (PC) occupies both banks of the endorhinal sulcus and has an important role in the pathophysiology of temporal lobe epilepsy (TLE). A recent study showed that resection of more than 50% of PC increased the odds of becoming seizure free by a factor of 16. OBJECTIVE: We report the feasibility of manual segmentation of PC and application of the Geodesic Information Flows (GIF) algorithm to automated segmentation, to guide resection. METHODS: Manual segmentation of PC was performed by two blinded independent examiners in 60 patients with TLE (55% Left TLE, 52% female) with a median age of 35 years (IQR, 29-47 years) and 20 controls (60% Women) with a median age of 39.5 years (IQR, 31-49). The GIF algorithm was used to create an automated pipeline for parcellating PC which was used to guide excision as part of temporal lobe resection for TLE. RESULTS: Right PC was larger in patients and controls. Parcellation of PC was used to guide anterior temporal lobe resection, with subsequent seizure freedom and no visual field or language deficit. CONCLUSION: Reliable segmentation of PC is feasible and can be applied prospectively to guide neurosurgical resection that increases the chances of a good outcome from temporal lobe resection for TLE.

11.
N Engl J Med ; 377(17): 1648-1656, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29069555

RESUMO

BACKGROUND: Detailed neuropathological information on the structural brain lesions underlying seizures is valuable for understanding drug-resistant focal epilepsy. METHODS: We report the diagnoses made on the basis of resected brain specimens from 9523 patients who underwent epilepsy surgery for drug-resistant seizures in 36 centers from 12 European countries over 25 years. Histopathological diagnoses were determined through examination of the specimens in local hospitals (41%) or at the German Neuropathology Reference Center for Epilepsy Surgery (59%). RESULTS: The onset of seizures occurred before 18 years of age in 75.9% of patients overall, and 72.5% of the patients underwent surgery as adults. The mean duration of epilepsy before surgical resection was 20.1 years among adults and 5.3 years among children. The temporal lobe was involved in 71.9% of operations. There were 36 histopathological diagnoses in seven major disease categories. The most common categories were hippocampal sclerosis, found in 36.4% of the patients (88.7% of cases were in adults), tumors (mainly ganglioglioma) in 23.6%, and malformations of cortical development in 19.8% (focal cortical dysplasia was the most common type, 52.7% of cases of which were in children). No histopathological diagnosis could be established for 7.7% of the patients. CONCLUSIONS: In patients with drug-resistant focal epilepsy requiring surgery, hippocampal sclerosis was the most common histopathological diagnosis among adults, and focal cortical dysplasia was the most common diagnosis among children. Tumors were the second most common lesion in both groups. (Funded by the European Union and others.).


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Epilepsia/patologia , Hipocampo/patologia , Malformações do Desenvolvimento Cortical/patologia , Adulto , Fatores Etários , Idade de Início , Neoplasias Encefálicas/complicações , Criança , Bases de Dados como Assunto , Epilepsia/etiologia , Epilepsia/cirurgia , Europa (Continente) , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical/complicações , Lobo Temporal/patologia
12.
Epilepsia ; 61(7): 1417-1426, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32589284

RESUMO

OBJECTIVE: Predicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some success. However, there are important challenges to consider: (1) electrodes physically closer to each other naturally tend to be more correlated, causing a spatial bias; (2) implantation location and number of electrodes differ between patients, making cross-subject comparisons difficult; and (3) functional correlation networks can vary over time but are currently assumed to be static. METHODS: In this study, we address these three challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative magnetic resonance imaging (MRI), intraoperative computed tomography, and postoperative MRI, allowing accurate localization of electrodes and delineation of the removed tissue. RESULTS: We show that normalizing for spatial proximity between nearby electrodes improves prediction of postsurgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (area under the receiver operating characteristic curve > 0.9, P « 0.05) but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment analyzed. SIGNIFICANCE: Future studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of postsurgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy.


Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Eletrodos Implantados , Eletroencefalografia/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
13.
Proc Natl Acad Sci U S A ; 114(46): 12297-12302, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29078334

RESUMO

Theta frequency oscillations in the 6- to 10-Hz range dominate the rodent hippocampal local field potential during translational movement, suggesting that theta encodes self-motion. Increases in theta power have also been identified in the human hippocampus during both real and virtual movement but appear as transient bursts in distinct high- and low-frequency bands, and it is not yet clear how these bursts relate to the sustained oscillation observed in rodents. Here, we examine depth electrode recordings from the temporal lobe of 13 presurgical epilepsy patients performing a self-paced spatial memory task in a virtual environment. In contrast to previous studies, we focus on movement-onset periods that incorporate both initial acceleration and an immediately preceding stationary interval associated with prominent theta oscillations in the rodent hippocampal formation. We demonstrate that movement-onset periods are associated with a significant increase in both low (2-5 Hz)- and high (6-9 Hz)-frequency theta power in the human hippocampus. Similar increases in low- and high-frequency theta power are seen across lateral temporal lobe recording sites and persist throughout the remainder of movement in both regions. In addition, we show that movement-related theta power is greater both before and during longer paths, directly implicating human hippocampal theta in the encoding of translational movement. These findings strengthen the connection between studies of theta-band activity in rodents and humans and offer additional insight into the neural mechanisms of spatial navigation.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Movimento/fisiologia , Navegação Espacial/fisiologia , Ritmo Teta/fisiologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Eletrodos Implantados , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Masculino , Memória Espacial , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia , Interface Usuário-Computador
14.
Epilepsia ; 60(9): 1942-1948, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31329275

RESUMO

OBJECTIVE: Various forms of vascular imaging are performed to identify vessels that should be avoided during stereoelectroencephalography (SEEG) planning. Digital subtraction angiography (DSA) is the gold standard for intracranial vascular imaging. DSA is an invasive investigation, and a balance is necessary to identify all clinically relevant vessels and not to visualize irrelevant vessels that may unnecessarily restrict electrode placement. We sought to estimate the size of vessels that are clinically significant for SEEG planning. METHODS: Thirty-three consecutive patients who underwent 354 SEEG electrode implantations planned with computer-assisted planning and DSA segmentation between 2016 and 2018 were identified from a prospectively maintained database. Intracranial positions of electrodes were segmented from postimplantation computed tomography scans. Each electrode was manually reviewed using "probe-eye view" with the raw preoperative DSA images for vascular conflicts. The diameter of vessels and the location of conflicts were noted. Vessel conflicts identified on raw DSA images were cross-referenced against other modalities to determine whether the conflict could have been detected. RESULTS: One hundred sixty-six vessel conflicts were identified between electrodes and DSA-identified vessels, with 0-3 conflicts per electrode and a median of four conflicts per patient. The median diameter of conflicting vessels was 1.3 mm (interquartile range [IQR] = 1.0-1.5 mm). The median depth of conflict was 31.0 mm (IQR = 14.3-45.0 mm) from the cortical surface. The addition of sulcal models to DSA, magnetic resonance venography (MRV), and T1 + gadolinium images, as an exclusion zone during computer-assisted planning, would have prevented the majority of vessel conflicts. We were unable to determine whether vessels were displaced or transected by the electrodes. SIGNIFICANCE: Vascular segmentation from DSA images was significantly more sensitive than T1 + gadolinium or MRV images. Electrode conflicts with vessels 1-1.5 mm in size did not result in a radiologically detectable or clinically significant hemorrhage and could potentially be excluded from consideration during SEEG planning.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Eletrodos Implantados , Eletroencefalografia/métodos , Procedimentos Neurocirúrgicos/métodos , Angiografia Digital , Encéfalo/cirurgia , Angiografia Cerebral , Feminino , Humanos , Masculino
15.
Epilepsy Behav ; 92: 311-326, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30738248

RESUMO

BACKGROUND: Epilepsy surgery is an important treatment option for people with drug-resistant epilepsy. Surgical procedures for epilepsy are underutilized worldwide, but it is far worse in low- and middle-income countries (LMIC), and it is less clear as to what extent people with drug-resistant epilepsy receive such treatment at all. Here, we review the existing evidence for the availability and outcome of epilepsy surgery in LMIC and discuss some challenges and priority. METHODS: We used an accepted six-stage methodological framework for scoping reviews as a guide. We searched PubMed, Embase, Global Health Archives, Index Medicus for South East Asia Region (IMSEAR), Index Medicus for Eastern Mediterranean Region (IMEMR), Latin American & Caribbean Health Sciences Literature (LILACS), African Journal Online (AJOL), and African Index Medicus (AIM) to identify the relevant literature. RESULTS: We retrieved 148 articles on epilepsy surgery from 31 countries representing 22% of the 143 LMIC. Epilepsy surgery appears established in some of these centers in Asia and Latin America while some are in their embryonic stage reporting procedures in a small cohort performed mostly by motivated neurosurgeons. The commonest surgical procedure reported was temporal lobectomies. The postoperative seizure-free rates and quality of life (QOL) are comparable with those in the high-income countries (HIC). Some models have shown that epilepsy surgery can be performed within a resource-limited setting through collaboration with international partners and through the use of information and communications technology (ICT). The cost of surgery is a fraction of what is available in HIC. CONCLUSION: This review has demonstrated the availability of epilepsy surgery in a few LMIC. The information available is inadequate to make any reasonable conclusion of its existence as routine practice. Collaborations with international partners can provide an opportunity to bring high-quality academic training and technological transfer directly to surgeons working in these regions and should be encouraged.


Assuntos
Países em Desenvolvimento/economia , Epilepsia Resistente a Medicamentos/economia , Epilepsia Resistente a Medicamentos/cirurgia , Saúde Global , Pobreza/economia , África/epidemiologia , Ásia/epidemiologia , Região do Caribe/epidemiologia , Epilepsia Resistente a Medicamentos/epidemiologia , Europa (Continente)/epidemiologia , Humanos , América Latina/epidemiologia , Pobreza/tendências , Qualidade de Vida
16.
Epilepsia ; 59(4): 814-824, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29528488

RESUMO

OBJECTIVE: Surgical resection of the mesial temporal structures brings seizure remission in 65% of individuals with drug-resistant mesial temporal lobe epilepsy (MTLE). Laser interstitial thermal therapy (LiTT) is a novel therapy that may provide a minimally invasive means of ablating the mesial temporal structures with similar outcomes, while minimizing damage to the neocortex. Systematic trajectory planning helps ensure safety and optimal seizure freedom through adequate ablation of the amygdalohippocampal complex (AHC). Previous studies have highlighted the relationship between the residual unablated mesial hippocampal head and failure to achieve seizure freedom. We aim to implement computer-assisted planning (CAP) to improve the ablation volume and safety of LiTT trajectories. METHODS: Twenty-five patients who had previously undergone LiTT for MTLE were studied retrospectively. The EpiNav platform was used to automatically generate an optimal ablation trajectory, which was compared with the previous manually planned and implemented trajectory. Expected ablation volumes and safety profiles of each trajectory were modeled. The implemented laser trajectory and achieved ablation of mesial temporal lobe structures were quantified and correlated with seizure outcome. RESULTS: CAP automatically generated feasible trajectories with reduced overall risk metrics (P < .001) and intracerebral length (P = .007). There was a significant correlation between the actual and retrospective CAP-anticipated ablation volumes, supporting a 15 mm diameter ablation zone model (P < .001). CAP trajectories would have provided significantly greater ablation of the amygdala (P = .0004) and AHC (P = .008), resulting in less residual unablated mesial hippocampal head (P = .001), and reduced ablation of the parahippocampal gyrus (P = .02). SIGNIFICANCE: Compared to manually planned trajectories CAP provides a better safety profile, with potentially improved seizure-free outcome and reduced neuropsychological deficits, following LiTT for MTLE.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/terapia , Hipertermia Induzida/métodos , Terapia a Laser/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
17.
Ann Neurol ; 80(6): 882-895, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27766665

RESUMO

OBJECTIVE: This study reports on a novel brain pathology in young patients with frontal lobe epilepsy (FLE) that is distinct from focal cortical dysplasia (FCD). METHODS: Surgical specimens from 20 young adults with FLE (mean age, 30 years) were investigated with histological/immunohistochemical markers for cortical laminar architecture, mammalian target of (mTOR) pathway activation and inhibition, cellular autophagy, and synaptic vesicle-mediated trafficking as well as proteomics analysis. Findings were correlated with pre-/postoperative clinical, imaging, and electrophysiological data. RESULTS: Excessive lipofuscin accumulation was observed in abnormal dysmorphic neurones in 6 cases, but not in seven FCD type IIB and 7 pathology-negative cases, despite similar age and seizure histories. Abnormal dysmorphic neurones on proteomics analysis were comparable to aged human brains. The mTOR pathway was activated, as in cases with dysplasia, but the immunoreactivities of nucleoporin p62, DEP-domain containing protein 5, clathrin, and dynamin-1 were different between groups, suggesting that enhanced autophagy flux and abnormal synaptic vesicle trafficking contribute to early lipofuscin aggregation in these cases, compared to suppression of autophagy in cases with typical dysplasia. Cases with abnormal neuronal lipofuscin showed subtle magnetic resonance imaging cortical abnormalities that localized with seizure onset zone and were more likely to have a family history. INTERPRETATION: We propose that excess neuronal lipofuscin accumulation in young patients with FLE represents a novel pathology underlying this epilepsy; the early accumulation of lipofuscin may be disease driven, secondary to as-yet unidentified drivers accelerating autophagic pathways, which may underpin the neuronal dysfunction in this condition. Ann Neurol 2016;80:882-895.


Assuntos
Encéfalo/metabolismo , Epilepsia do Lobo Frontal/metabolismo , Lipofuscina/metabolismo , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteômica , Serina-Treonina Quinases TOR/metabolismo
18.
J Neurol Neurosurg Psychiatry ; 88(11): 933-940, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28870986

RESUMO

IMPORTANCE: Surgical treatment can bring seizure remission in people with focal epilepsy but requires careful selection of candidates. OBJECTIVES: To determine which preoperative factors are associated with postoperative seizure outcome. DESIGN: We audited seizure outcome of 693 adults who had resective epilepsy surgery between 1990 and 2010 and used survival analysis to detect preoperatively identifiable risk factors of poor seizure outcome. RESULTS: Seven factors were significantly associated with increased probability of recurrence of seizures with impaired awareness postsurgery: MRI findings (eg, HR adjusted for other variables in the model 2.5; 95% CI 1.6 to 3.8 for normal MRI compared with hippocampal sclerosis), a history of secondarily generalised convulsive seizures (2.3; 95% CI 1.7 to 3.0 for these seizures in the previous year vs never), psychiatric history (1.3; 95% CI 1.1 to 1.7), learning disability (1.8; 95% CI 1.2 to 2.6) and extratemporal (vs temporal) surgery (1.4; 95% CI 1.02, 2.04). People with an older onset of epilepsy had a higher probability of seizure recurrence (1.01; 95% CI 1.00, 1.02) as did those who had used more antiepileptic drugs (1.05; 95% CI 1.01 to 1.09). Combinations of variables associated with seizure recurrence gave overall low probabilities of 5-year seizure freedom (eg, a normal MRI and convulsive seizures in the previous year has a probability of seizure freedom at 5 years of approximately 0.19). CONCLUSIONS AND RELEVANCE: Readily identified clinical features and investigations are associated with reduced probability of good outcome and need consideration when planning presurgical evaluation.


Assuntos
Epilepsias Parciais/cirurgia , Resultado do Tratamento , Adulto , Transtornos da Consciência/diagnóstico , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Cuidados Pré-Operatórios , Recidiva , Fatores de Risco , Análise de Sobrevida
19.
Brain ; 139(Pt 2): 415-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26754787

RESUMO

Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery.


Assuntos
Imageamento por Ressonância Magnética/métodos , Memória/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Lobo Temporal/fisiologia , Lobo Temporal/cirurgia , Adulto , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/cirurgia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
J Magn Reson Imaging ; 41(1): 34-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497105

RESUMO

The design and operation of a facility in which a magnetic resonance imaging (MRI) scanner is incorporated into a room used for surgical or endovascular cardiac interventions presents several challenges. MR safety must be maintained in the presence of a much wider variety of equipment than is found in a diagnostic unit, and of staff unfamiliar with the MRI environment, without compromising the safety and practicality of the interventional procedure. Both the MR-guided cardiac interventional unit at Kings College London and the intraoperative imaging suite at the National Hospital for Neurology and Neurosurgery are single-room interventional facilities incorporating 1.5 T cylindrical-bore MRI scanners. The two units employ similar strategies to maintain MR safety, both in original design and day-to-day operational workflows, and between them over a decade of incident-free practice has been accumulated. This article outlines these strategies, highlighting both similarities and differences between the units, as well as some lessons learned and resulting procedural changes made in both units since installation.


Assuntos
Departamentos Hospitalares/organização & administração , Arquitetura Hospitalar/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Segurança do Paciente , Procedimentos Cirúrgicos Cardíacos , Procedimentos Endovasculares , Humanos , Londres , Neurocirurgia , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA