Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hum Genet ; 99(2): 318-36, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27486776

RESUMO

Bardet-Biedl syndrome (BBS) is a defining ciliopathy, notable for extensive allelic and genetic heterogeneity, almost all of which has been identified through sequencing. Recent data have suggested that copy-number variants (CNVs) also contribute to BBS. We used a custom oligonucleotide array comparative genomic hybridization (aCGH) covering 20 genes that encode intraflagellar transport (IFT) components and 74 ciliopathy loci to screen 92 unrelated individuals with BBS, irrespective of their known mutational burden. We identified 17 individuals with exon-disruptive CNVs (18.5%), including 13 different deletions in eight BBS genes (BBS1, BBS2, ARL6/BBS3, BBS4, BBS5, BBS7, BBS9, and NPHP1) and a deletion and a duplication in other ciliopathy-associated genes (ALMS1 and NPHP4, respectively). By contrast, we found a single heterozygous exon-disruptive event in a BBS-associated gene (BBS9) in 229 control subjects. Superimposing these data with resequencing revealed CNVs to (1) be sufficient to cause disease, (2) Mendelize heterozygous deleterious alleles, and (3) contribute oligogenic alleles by combining point mutations and exonic CNVs in multiple genes. Finally, we report a deletion and a splice site mutation in IFT74, inherited under a recessive paradigm, defining a candidate BBS locus. Our data suggest that CNVs contribute pathogenic alleles to a substantial fraction of BBS-affected individuals and highlight how either deletions or point mutations in discrete splice isoforms can induce hypomorphic mutations in genes otherwise intolerant to deleterious variation. Our data also suggest that CNV analyses and resequencing studies unbiased for previous mutational burden is necessary to delineate the complexity of disease architecture.


Assuntos
Síndrome de Bardet-Biedl/genética , Variações do Número de Cópias de DNA/genética , Mutação , Adolescente , Adulto , Alelos , Animais , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Éxons/genética , Feminino , Gastrulação/genética , Genes Recessivos , Humanos , Lactente , Masculino , Linhagem , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Am J Hum Genet ; 99(1): 174-87, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27392076

RESUMO

Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.


Assuntos
Anemia/genética , Heterozigoto , Nefropatias/genética , Mutação , Canais de Translocação SEC/genética , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Animais , Biópsia , Criança , Doença Crônica , Progressão da Doença , Retículo Endoplasmático/metabolismo , Exoma/genética , Feminino , Retardo do Crescimento Fetal/genética , Genes Dominantes , Complexo de Golgi/metabolismo , Humanos , Recém-Nascido , Nefropatias/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Neutropenia/genética , Linhagem , Fenótipo , RNA Mensageiro/análise , RNA Mensageiro/genética , Canais de Translocação SEC/química , Síndrome , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética
3.
JCI Insight ; 9(17)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088281

RESUMO

Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.


Assuntos
Anemia de Diamond-Blackfan , Proteínas Ribossômicas , Peixe-Zebra , Anemia de Diamond-Blackfan/genética , Proteínas Ribossômicas/genética , Humanos , Peixe-Zebra/genética , Animais , Masculino , Feminino , Linhagem , Haploinsuficiência
4.
Nat Genet ; 52(11): 1145-1150, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046855

RESUMO

The influence of genetic background on driver mutations is well established; however, the mechanisms by which the background interacts with Mendelian loci remain unclear. We performed a systematic secondary-variant burden analysis of two independent cohorts of patients with Bardet-Biedl syndrome (BBS) with known recessive biallelic pathogenic mutations in one of 17 BBS genes for each individual. We observed a significant enrichment of trans-acting rare nonsynonymous secondary variants in patients with BBS compared with either population controls or a cohort of individuals with a non-BBS diagnosis and recessive variants in the same gene set. Strikingly, we found a significant over-representation of secondary alleles in chaperonin-encoding genes-a finding corroborated by the observation of epistatic interactions involving this complex in vivo. These data indicate a complex genetic architecture for BBS that informs the biological properties of disease modules and presents a model for secondary-variant burden analysis in recessive disorders.


Assuntos
Síndrome de Bardet-Biedl/genética , Variação Genética , Alelos , Estudos de Coortes , Exoma , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA