Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38033290

RESUMO

Within drug discovery, the goal of AI scientists and cheminformaticians is to help identify molecular starting points that will develop into safe and efficacious drugs while reducing costs, time and failure rates. To achieve this goal, it is crucial to represent molecules in a digital format that makes them machine-readable and facilitates the accurate prediction of properties that drive decision-making. Over the years, molecular representations have evolved from intuitive and human-readable formats to bespoke numerical descriptors and fingerprints, and now to learned representations that capture patterns and salient features across vast chemical spaces. Among these, sequence-based and graph-based representations of small molecules have become highly popular. However, each approach has strengths and weaknesses across dimensions such as generality, computational cost, inversibility for generative applications and interpretability, which can be critical in informing practitioners' decisions. As the drug discovery landscape evolves, opportunities for innovation continue to emerge. These include the creation of molecular representations for high-value, low-data regimes, the distillation of broader biological and chemical knowledge into novel learned representations and the modeling of up-and-coming therapeutic modalities.


Assuntos
Descoberta de Drogas , Intuição , Humanos , Aprendizagem
2.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930883

RESUMO

Intracellular tau fibrils are sources of neurotoxicity and oxidative stress in Alzheimer's. Current drug discovery efforts have focused on molecules with tau fibril disaggregation and antioxidation functions. However, recent studies suggest that membrane-bound tau-containing oligomers (mTCOs), smaller and less ordered than tau fibrils, are neurotoxic in the early stage of Alzheimer's. Whether tau fibril-targeting molecules are effective against mTCOs is unknown. The binding of epigallocatechin-3-gallate (EGCG), CNS-11, and BHT-CNS-11 to in silico mTCOs and experimental tau fibrils was investigated using machine learning-enhanced docking and molecular dynamics simulations. EGCG and CNS-11 have tau fibril disaggregation functions, while the proposed BHT-CNS-11 has potential tau fibril disaggregation and antioxidation functions like EGCG. Our results suggest that the three molecules studied may also bind to mTCOs. The predicted binding probability of EGCG to mTCOs increases with the protein aggregate size. In contrast, the predicted probability of CNS-11 and BHT-CNS-11 binding to the dimeric mTCOs is higher than binding to the tetrameric mTCOs for the homo tau but not for the hetero tau-amylin oligomers. Our results also support the idea that anionic lipids may promote the binding of molecules to mTCOs. We conclude that tau fibril-disaggregating and antioxidating molecules may bind to mTCOs, and that mTCOs may also be useful targets for Alzheimer's drug design.


Assuntos
Antioxidantes , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Amiloide/química , Amiloide/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Catequina/farmacologia , Agregados Proteicos
3.
J Adv Res ; 46: 135-147, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35901959

RESUMO

INTRODUCTION: The discovery of a new drug is a costly and lengthy endeavour. The computational prediction of which small molecules can bind to a protein target can accelerate this process if the predictions are fast and accurate enough. Recent machine-learning scoring functions re-evaluate the output of molecular docking to achieve more accurate predictions. However, previous scoring functions were trained on crystalised protein-ligand complexes and datasets of decoys. The limited availability of crystal structures and biases in the decoy datasets can lower the performance of scoring functions. OBJECTIVES: To address key limitations of previous scoring functions and thus improve the predictive performance of structure-based virtual screening. METHODS: A novel machine-learning scoring function was created, named SCORCH (Scoring COnsensus for RMSD-based Classification of Hits). To develop SCORCH, training data is augmented by considering multiple ligand poses and labelling poses based on their RMSD from the native pose. Decoy bias is addressed by generating property-matched decoys for each ligand and using the same methodology for preparing and docking decoys and ligands. A consensus of 3 different machine learning approaches is also used to improve performance. RESULTS: We find that multi-pose augmentation in SCORCH improves its docking power and screening power on independent benchmark datasets. SCORCH outperforms an equivalent scoring function trained on single poses, with a 1 % enrichment factor (EF) of 13.78 vs. 10.86 on 18 DEKOIS 2.0 targets and a mean native pose rank of 5.9 vs 30.4 on CSAR 2014. Additionally, SCORCH outperforms widely used scoring functions in virtual screening and pose prediction on independent benchmark datasets. CONCLUSION: By rationally addressing key limitations of previous scoring functions, SCORCH improves the performance of virtual screening. SCORCH also provides an estimate of its uncertainty, which can help reduce the cost and time required for drug discovery.


Assuntos
Aprendizado de Máquina , Proteínas , Simulação de Acoplamento Molecular , Proteínas/química , Proteínas/metabolismo , Ligação Proteica , Ligantes , Incerteza
4.
Nat Med ; 27(11): 2041-2047, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480125

RESUMO

Countries of the World Health Organization (WHO) African Region have experienced a wide range of coronavirus disease 2019 (COVID-19) epidemics. This study aimed to identify predictors of the timing of the first COVID-19 case and the per capita mortality in WHO African Region countries during the first and second pandemic waves and to test for associations with the preparedness of health systems and government pandemic responses. Using a region-wide, country-based observational study, we found that the first case was detected earlier in countries with more urban populations, higher international connectivity and greater COVID-19 test capacity but later in island nations. Predictors of a high first wave per capita mortality rate included a more urban population, higher pre-pandemic international connectivity and a higher prevalence of HIV. Countries rated as better prepared and having more resilient health systems were worst affected by the disease, the imposition of restrictions or both, making any benefit of more stringent countermeasures difficult to detect. Predictors for the second wave were similar to the first. Second wave per capita mortality could be predicted from that of the first wave. The COVID-19 pandemic highlights unanticipated vulnerabilities to infectious disease in Africa that should be taken into account in future pandemic preparedness planning.


Assuntos
COVID-19/epidemiologia , COVID-19/mortalidade , Adulto , África/epidemiologia , Criança , Epidemias , Feminino , Humanos , Recém-Nascido , Masculino , Pandemias , Gravidez , Fatores de Risco , SARS-CoV-2/fisiologia , Fatores Socioeconômicos , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA