Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 408, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843592

RESUMO

BACKGROUND: Small RNAs are critical components in regulating various cellular pathways. These molecules may be tissue-associated or circulating in bodily fluids and have been shown to associate with different tumors. Next generation sequencing (NGS) on small RNAs is a powerful tool for profiling and discovery of microRNAs (miRNAs). RESULTS: In this study, we isolated total RNA from various bodily fluids: blood, leukocytes, serum, plasma, saliva, cell-free saliva, urine and cell-free urine. Next, we used Illumina's NGS platform and intensive bioinformatics analysis to investigate the distribution and signature of small RNAs in the various fluids. Successful NGS was accomplished despite the variations in RNA concentrations among the different fluids. Among the fluids studied, blood and plasma were found to be the most promising fluids for small RNA profiling as well as novel miRNA prediction. Saliva and urine yielded lower numbers of identifiable molecules and therefore were less reliable in small RNA profiling and less useful in predicting novel molecules. In addition, all fluids shared many molecules, including 139 miRNAs, the most abundant tRNAs, and the most abundant piwi-interacting RNAs (piRNAs). Fluids of similar origin (blood, urine or saliva) displayed closer clustering, while each fluid still retains its own characteristic signature based on its unique molecules and its levels of the common molecules. Donor urine samples showed sex-dependent differential clustering, which may prove useful for future studies. CONCLUSIONS: This study shows the successful clustering and unique signatures of bodily fluids based on their miRNA, tRNA and piRNA content. With this information, cohorts may be differentiated based on multiple molecules from each small RNA class by a multidimensional assessment of the overall molecular signature.


Assuntos
Líquidos Corporais/metabolismo , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
2.
Biochem Biophys Res Commun ; 493(1): 246-251, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28899780

RESUMO

Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture.


Assuntos
Peróxido de Hidrogênio/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Animais , Células HeLa , Humanos , Células MCF-7 , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA