Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurosci ; 42(2): 255-263, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853083

RESUMO

We previously found that human heroin addicts and mice chronically exposed to morphine exhibit a significant increase in the number of detected hypocretin/orexin (Hcrt)-producing neurons. However, it remains unknown how this increase affects target areas of the hypocretin system involved in opioid withdrawal, including norepinephrine containing structures locus coeruleus (LC) and A1/A2 medullary regions. Using a combination of immunohistochemical, biochemical, imaging, and behavioral techniques, we now show that the increase in detected hypocretin cell number translates into a significant increase in hypocretin innervation and tyrosine hydroxylase (TH) levels in the LC without affecting norepinephrine-containing neuronal cell number. We show that the increase in TH is completely dependent on Hcrt innervation. The A1/A2 regions were unaffected by morphine treatment. Manipulation of the Hcrt system may affect opioid addiction and withdrawal.SIGNIFICANCE STATEMENT Previously, we have shown that the hypothalamic hypocretin system undergoes profound anatomic changes in human heroin addicts and in mice exposed to morphine, suggesting a role of this system in the development of addictive behaviors. The locus coeruleus plays a key role in opioid addiction. Here we report that the hypothalamic hypocretin innervation of the locus coeruleus increases dramatically with morphine administration to mice. This increase is correlated with a massive increase in tyrosine hydroxylase expression in locus coeruleus. Elimination of hypocretin neurons prevents the tyrosine hydroxylase increase in locus coeruleus and dampens the somatic and affective components of opioid withdrawal.


Assuntos
Morfina/efeitos adversos , Neurônios/metabolismo , Norepinefrina/metabolismo , Alcaloides Opiáceos/efeitos adversos , Orexinas/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Locus Cerúleo/metabolismo , Camundongos , Atividade Motora/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Ann Neurol ; 74(6): 786-93, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23821583

RESUMO

OBJECTIVE: To determine whether histamine cells are altered in human narcolepsy with cataplexy and in animal models of this disease. METHODS: Immunohistochemistry for histidine decarboxylase (HDC) and quantitative microscopy were used to detect histamine cells in human narcoleptics, hypocretin (Hcrt) receptor-2 mutant dogs, and 3 mouse narcolepsy models: Hcrt (orexin) knockouts, ataxin-3-orexin, and doxycycline-controlled-diphtheria-toxin-A-orexin. RESULTS: We found an average 64% increase in the number of histamine neurons in human narcolepsy with cataplexy, with no overlap between narcoleptics and controls. However, we did not see altered numbers of HDC cells in any of the animal models of narcolepsy. INTERPRETATION: Changes in histamine cell numbers are not required for the major symptoms of narcolepsy, because all animal models have these symptoms. The histamine cell changes we saw in humans did not occur in the 4 animal models of Hcrt dysfunction we examined. Therefore, the loss of Hcrt receptor-2, of the Hcrt peptide, or of Hcrt cells is not sufficient to produce these changes. We speculate that the increased histamine cell numbers we see in human narcolepsy may instead be related to the process causing the human disorder. Although research has focused on possible antigens within the Hcrt cells that might trigger their autoimmune destruction, the present findings suggest that the triggering events of human narcolepsy may involve a proliferation of histamine-containing cells. We discuss this and other explanations of the difference between human narcoleptics and animal models of narcolepsy, including therapeutic drug use and species differences.


Assuntos
Encéfalo/metabolismo , Cataplexia/metabolismo , Histamina/metabolismo , Narcolepsia/metabolismo , Neurônios/metabolismo , Adulto , Idoso de 80 Anos ou mais , Animais , Encéfalo/citologia , Encéfalo/patologia , Contagem de Células/métodos , Modelos Animais de Doenças , Cães , Feminino , Humanos , Masculino , Camundongos/genética , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação/genética
3.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37790444

RESUMO

We previously found that heroin addiction in humans is accompanied by an increase in the number of detected Hcrt neurons and a decrease in their soma size. We now show that the increased number of Hcrt cells visible after morphine treatment is likely the result of increased Hcrt production in neurons having sub-detection levels of the peptides. We find that morphine increases Hcrt projections to the ventral tegmental area (VTA), the level of tyrosine hydroxylase enzyme (TH) and the number of TH positive cells in VTA, with no changes in the adjacent substantia nigra. We find that the dual Hcrt receptor antagonist suvorexant prevents morphine-induced changes in the number and size of Hcrt neurons, microglial activation and morphine anticipatory behavior, but does not diminish morphine analgesia. These findings suggest that combined administration of opiates and suvorexant may be a less addictive way of administering opiates for pain relief in humans.

4.
Sleep ; 46(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37155728

RESUMO

Long-term use of sodium oxybate (SXB), (also called gamma-hydroxybutyrate [GHB]) attenuates the cataplexy and sleepiness of human narcolepsy. We had previously found that chronic opiate usage in humans and long-term opiate administration to mice significantly increased the number of detected hypocretin/orexin (Hcrt) neurons, decreased their size, and increased Hcrt level in the hypothalamus. We also found that opiates significantly decreased cataplexy in human narcoleptics as well as in narcoleptic mice and that cessation of locus coeruleus neuronal activity preceded and was tightly linked to cataplectic attacks in narcoleptic dogs. We tested the hypothesis that SXB produces changes similar to opiates and now report that chronic SXB administration significantly increased the size of Hcrt neurons, the reverse of what we had seen with opiates in humans and mice. Levels of Hcrt in the hypothalamus were nonsignificantly lower, in contrast to the significant increase in hypothalamic Hcrt level after opiates. SXB decreased tyrosine hydroxylase levels in the locus coeruleus, the major descending projection of the hypocretin system, also the reverse of what we saw with opioids. Therefore despite some similar effects on narcoleptic symptomatology, SXB does not produce anatomical changes similar to those elicited by opiates. Analysis of changes in other links in the cataplexy pathway might further illuminate SXB's mechanism of action on narcolepsy.


Assuntos
Cataplexia , Narcolepsia , Alcaloides Opiáceos , Oxibato de Sódio , Humanos , Camundongos , Animais , Cães , Orexinas/metabolismo , Oxibato de Sódio/farmacologia , Cataplexia/tratamento farmacológico , Cataplexia/metabolismo , Locus Cerúleo/metabolismo , Narcolepsia/tratamento farmacológico , Narcolepsia/metabolismo , Neurônios/metabolismo , Alcaloides Opiáceos/metabolismo
5.
Neuroscience ; 522: 1-10, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121379

RESUMO

Human heroin addicts and mice administered morphine for a 2 week period show a greatly increased number of hypothalamic hypocretin (Hcrt or orexin) producing neurons with a concomitant reduction in Hcrt cell size. Male rats addicted to cocaine similarly show an increased number of detectable Hcrt neurons. These findings led us to hypothesize that humans with alcohol use disorder (AUD) would show similar changes. We now report that humans with AUD have a decreased number and size of detectable Hcrt neurons. In addition, the intermingled melanin concentrating hormone (MCH) neurons are reduced in size. We saw no change in the size and number of tuberomammillary histamine neurons in AUD. Within the Hcrt/MCH neuronal field we found that microglia cell size was increased in AUD brains. In contrast, male rats with 2 week alcohol exposure, sufficient to elicit withdrawal symptoms, show no change in the number or size of Hcrt, MCH and histamine neurons, and no change in the size of microglia. The present study indicates major differences between the response of Hcrt neurons to opioids and that to alcohol in human subjects with a history of substance abuse.


Assuntos
Hormônios Hipotalâmicos , Neuropeptídeos , Humanos , Masculino , Ratos , Camundongos , Animais , Orexinas/metabolismo , Neuropeptídeos/metabolismo , Histamina , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas , Neurônios/metabolismo , Etanol
6.
J Neurosci ; 31(43): 15455-67, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22031892

RESUMO

Hypocretin (Hcrt) cell loss is responsible for narcolepsy, but Hcrt's role in normal behavior is unclear. We found that Hcrt knock-out mice were unable to work for food or water reward during the light phase. However, they were unimpaired relative to wild-type (WT) mice when working for reward during the dark phase or when working to avoid shock in the light or dark phase. In WT mice, expression of Fos in Hcrt neurons occurs only in the light phase when working for positive reinforcement. Expression was seen throughout the mediolateral extent of the Hcrt field. Fos was not expressed when expected or unexpected unearned rewards were presented, when working to avoid negative reinforcement, or when given or expecting shock, even though these conditions elicit maximal electroencephalogram (EEG) arousal. Fos was not expressed in the light phase when light was removed. This may explain the lack of light-induced arousal in narcoleptics and its presence in normal individuals. This is the first demonstration of such specificity of arousal system function and has implications for understanding the motivational and circadian consequences of arousal system dysfunction. The current results also indicate that comparable and complementary specificities must exist in other arousal systems.


Assuntos
Aprendizagem da Esquiva/fisiologia , Ritmo Circadiano/fisiologia , Condicionamento Operante/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Luz/efeitos adversos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Reforço Psicológico , Análise de Variância , Animais , Encéfalo/citologia , Ritmo Circadiano/genética , Ingestão de Líquidos/genética , Ingestão de Alimentos/genética , Eletroencefalografia , Eletromiografia , Eletrochoque/efeitos adversos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/deficiência , Orexinas , Esquema de Reforço , Análise Espectral
7.
Handb Clin Neurol ; 180: 359-374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225941

RESUMO

The hypocretins/orexins were discovered in 1998. Within 2 years, this led to the discovery of the cause of human narcolepsy, a 90% loss of hypothalamic neurons containing these peptides. Further work demonstrated that these neurons were not simply linked to waking. Rather these neurons were active during pleasurable behaviors in waking and were silenced by aversive stimulation. This was seen in wild-type mice, rats, cats, and dogs. It was also evident in humans, with increased Hcrt release during pleasurable activities and decreased release, to the levels seen in sleep, during pain. We found that human heroin addicts have, on average, an increase of 54% in the number of detectable Hcrt neurons compared to "control" human brains and that these Hcrt neurons are substantially smaller than those in control brains. We found that in mice, chronic morphine administration induced the same changes in Hcrt neuron number and size. Our studies in the mouse allowed us to determine the specificity, dose response relations, time course of the change in the number of Hcrt neurons, and that the increased number of Hcrt neurons after opiates was not due to neurogenesis. Furthermore, we found that it took a month or longer for these anatomical changes in the mouse brain to return to baseline. Human narcoleptics, despite their prescribed use of several commonly addictive drugs, do not show significant evidence of dose escalation or substance use disorder. Similarly, mice in which the peptide has been eliminated are resistant to addiction. These findings are consistent with the concept that an increased number of Hcrt neurons may underlie and maintain opioid or cocaine use disorders.


Assuntos
Narcolepsia , Prazer , Animais , Gatos , Cães , Humanos , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Orexinas/metabolismo , Ratos
8.
Brain Res ; 1718: 176-185, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071305

RESUMO

Non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonists have been suggested to evoke psychotomimetic-like behaviors by selectively targeting GABAergic elements in cortical and thalamic circuits. In previous studies, we had reported the involvement of the reticular and anterior thalamic nuclei (ATN) in the MK-801-evoked hyperactivity and other motor alterations. Consistent with the possibility that these responses were mediated by thalamic disinhibition, we examined the participation of cortical and hippocampal areas innervated by ATN in the responses elicited by the systemic administration of MK-801 (0.2 mg/kg) and compared them to the effects produced by the microinjection of a subconvulsive dose of bicuculline (GABAA receptor antagonist) in the ATN. We used the expression of Fos related antigen 2 (Fra-2) as a neuronal activity marker in the ATN and its projection areas such as hippocampus (HPC), retrosplenial cortex (RS), entorhinal cortex (EC) and medial prefrontal cortex (mPFC). Dorsal (caudate-putamen, CPu) and ventral striatum (nucleus accumbens, core and shell, NAc,co and NAc,sh) were also studied. Behavioral and brain activation results suggest a partial overlap after the effect of MK-801 administration and ATN disinhibition. MK-801 and ATN disinhibition increases locomotor activity and disorganized movements, while ATN disinhibition also reduces rearing behavior. A significant increase in Fra-2 immunoreactivity (Fra-2-IR) in the ATN, mPFC (prelimbic area, PrL) and NAc,sh was observed after MK-801, while a different pattern of Fra-2-IR was detected following ATN disinhibition (e.g., increase in DG and NAc,sh, and decrease in PrL cortex). Overall, our data may contribute to the understanding of dysfunctional neural circuits involved in schizophrenia.


Assuntos
Núcleos Anteriores do Tálamo/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Núcleos Anteriores do Tálamo/metabolismo , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A , Giro do Cíngulo/metabolismo , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Esquizofrenia/metabolismo
9.
Sci Transl Med ; 10(447)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950444

RESUMO

The changes in brain function that perpetuate opiate addiction are unclear. In our studies of human narcolepsy, a disease caused by loss of immunohistochemically detected hypocretin (orexin) neurons, we encountered a control brain (from an apparently neurologically normal individual) with 50% more hypocretin neurons than other control human brains that we had studied. We discovered that this individual was a heroin addict. Studying five postmortem brains from heroin addicts, we report that the brain tissue had, on average, 54% more immunohistochemically detected neurons producing hypocretin than did control brains from neurologically normal subjects. Similar increases in hypocretin-producing cells could be induced in wild-type mice by long-term (but not short-term) administration of morphine. The increased number of detected hypocretin neurons was not due to neurogenesis and outlasted morphine administration by several weeks. The number of neurons containing melanin-concentrating hormone, which are in the same hypothalamic region as hypocretin-producing cells, did not change in response to morphine administration. Morphine administration restored the population of detected hypocretin cells to normal numbers in transgenic mice in which these neurons had been partially depleted. Morphine administration also decreased cataplexy in mice made narcoleptic by the depletion of hypocretin neurons. These findings suggest that opiate agonists may have a role in the treatment of narcolepsy, a disorder caused by hypocretin neuron loss, and that increased numbers of hypocretin-producing cells may play a role in maintaining opiate addiction.


Assuntos
Encéfalo/metabolismo , Cataplexia/tratamento farmacológico , Narcolepsia/tratamento farmacológico , Alcaloides Opiáceos/uso terapêutico , Orexinas/biossíntese , Animais , Encéfalo/patologia , Cataplexia/complicações , Contagem de Células , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Heroína , Humanos , Masculino , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Morfina/farmacologia , Morfina/uso terapêutico , Narcolepsia/complicações , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Alcaloides Opiáceos/farmacologia , Ratos Sprague-Dawley , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/patologia
10.
PLoS One ; 12(6): e0178573, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28570646

RESUMO

The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt) neurons are seen in the night compared to the day, and an additional 17% are seen after inhibiting microtubule polymerization with colchicine. We see no such difference between the number of MCH (melanin concentrating hormone) neurons in dark, light or colchicine conditions, despite MCH and Hcrt both being hypothalamic peptide transmitters. Although the size of Hcrt neurons did not differ between light and dark, the size of MCH neurons was increased by 15% in the light phase. The number of neurons containing histidine decarboxylase (HDC), the histamine synthesizing enzyme, was 34% greater in the dark than in the light, but, like Hcrt, cell size did not differ. We did not find a significant difference in the number or the size of neurons expressing choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, in the horizontal diagonal band (HBD) during the dark and light conditions. As expected, colchicine treatment did not increase the number of these neurons. Understanding the function and dynamics of transmitter production within "non-visible" phenotypically defined cells has fundamental implications for our understanding of brain plasticity.


Assuntos
Ritmo Circadiano , Histamina/biossíntese , Neurônios/metabolismo , Orexinas/biossíntese , Animais , Colina O-Acetiltransferase/metabolismo , Colchicina/administração & dosagem , Histidina Descarboxilase/metabolismo , Hormônios Hipotalâmicos/metabolismo , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/enzimologia , Hormônios Hipofisários/metabolismo
11.
Curr Biol ; 26(7): R273-4, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27046810

RESUMO

We wish to respond to the commentary of de la Iglesia et al. [1]. Studies comparing sleep in different communities have different goals. One frequent goal has been to determine how sleep is affected by manipulating specific 'modern' conditions. Many studies have investigated the effect of artificial light and electronic entertainment. Such studies have clearly shown that light, particularly blue light, delays sleep onset [2]. Studying the effect of artificial light on sleep was not a goal of our study.


Assuntos
Luz , Sono
12.
Curr Biol ; 25(21): 2862-2868, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26480842

RESUMO

How did humans sleep before the modern era? Because the tools to measure sleep under natural conditions were developed long after the invention of the electric devices suspected of delaying and reducing sleep, we investigated sleep in three preindustrial societies [1-3]. We find that all three show similar sleep organization, suggesting that they express core human sleep patterns, most likely characteristic of pre-modern era Homo sapiens. Sleep periods, the times from onset to offset, averaged 6.9-8.5 hr, with sleep durations of 5.7-7.1 hr, amounts near the low end of those industrial societies [4-7]. There was a difference of nearly 1 hr between summer and winter sleep. Daily variation in sleep duration was strongly linked to time of onset, rather than offset. None of these groups began sleep near sunset, onset occurring, on average, 3.3 hr after sunset. Awakening was usually before sunrise. The sleep period consistently occurred during the nighttime period of falling environmental temperature, was not interrupted by extended periods of waking, and terminated, with vasoconstriction, near the nadir of daily ambient temperature. The daily cycle of temperature change, largely eliminated from modern sleep environments, may be a potent natural regulator of sleep. Light exposure was maximal in the morning and greatly decreased at noon, indicating that all three groups seek shade at midday and that light activation of the suprachiasmatic nucleus is maximal in the morning. Napping occurred on <7% of days in winter and <22% of days in summer. Mimicking aspects of the natural environment might be effective in treating certain modern sleep disorders.


Assuntos
Ritmo Circadiano/fisiologia , Sono/fisiologia , Bolívia , Países em Desenvolvimento , Humanos , Luz , Namíbia , Estações do Ano , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Tanzânia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA