Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 452(7190): 966-9, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18432239

RESUMO

Blazars are the most extreme active galactic nuclei. They possess oppositely directed plasma jets emanating at near light speeds from accreting supermassive black holes. According to theoretical models, such jets are propelled by magnetic fields twisted by differential rotation of the black hole's accretion disk or inertial-frame-dragging ergosphere. The flow velocity increases outward along the jet in an acceleration and collimation zone containing a coiled magnetic field. Detailed observations of outbursts of electromagnetic radiation, for which blazars are famous, can potentially probe the zone. It has hitherto not been possible to either specify the location of the outbursts or verify the general picture of jet formation. Here we report sequences of high-resolution radio images and optical polarization measurements of the blazar BL Lacertae. The data reveal a bright feature in the jet that causes a double flare of radiation from optical frequencies to TeV gamma-ray energies, as well as a delayed outburst at radio wavelengths. We conclude that the event starts in a region with a helical magnetic field that we identify with the acceleration and collimation zone predicted by the theories. The feature brightens again when it crosses a standing shock wave corresponding to the bright 'core' seen on the images.

2.
Science ; 373(6556): 789-792, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385395

RESUMO

Accretion disks around supermassive black holes in active galactic nuclei produce continuum radiation at ultraviolet and optical wavelengths. Physical processes in the accretion flow lead to stochastic variability of this emission on a wide range of time scales. We measured the optical continuum variability observed in 67 active galactic nuclei and the characteristic time scale at which the variability power spectrum flattens. We found a correlation between this time scale and the black hole mass extending over the entire mass range of supermassive black holes. This time scale is consistent with the expected thermal time scale at the ultraviolet-emitting radius in standard accretion disk theory. Accreting white dwarfs lie close to this correlation, suggesting a common process for all accretion disks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA