RESUMO
The fine-tuning of gene expression is critical for all cellular processes; aberrations in this activity can lead to pathology, and conversely, resilience. As their role in coordinating organismal responses to both internal and external factors have increasingly come into focus, small non-coding RNAs have emerged as an essential component to disease etiology. Using Systemic RNA interference Defective (SID) mutants of the nematode Caenorhabditis elegans, deficient in gene silencing, we examined the potential consequences of dysfunctional epigenomic regulation in the context of Parkinson's disease (PD). Specifically, the loss of either the sid-1 or sid-3 genes, which encode a dsRNA transporter and an endocytic regulatory non-receptor tyrosine kinase, respectively, conferred neuroprotection to dopaminergic (DA) neurons in an established transgenic C. elegans strain wherein overexpression of human α-synuclein (α-syn) from a chromosomally integrated multicopy transgene causes neurodegeneration. We further show that knockout of a specific microRNA, mir-2, attenuates α-syn neurotoxicity; suggesting that the native targets of mir-2-dependent gene silencing represent putative neuroprotective modulators. In support of this, we demonstrated that RNAi knockdown of multiple mir-2 targets enhanced α-syn-induced DA neurodegeneration. Moreover, we demonstrate that mir-2 overexpression originating in the intestine can induce neurodegeneration of DA neurons, an effect that was reversed by pharmacological inhibition of SID-3 activity. Interestingly, sid-1 mutants retained mir-2-induced enhancement of neurodegeneration. Transcriptomic analysis of α-syn animals with and without a sid-1 mutation revealed 27 differentially expressed genes with human orthologs related to a variety of diseases, including PD. Among these was pgp-8, encoding a P-glycoprotein-related ABC transporter. Notably, sid-1; pgp-8 double mutants abolished the neurodegeneration resulting from intestinal mir-2 overexpression. This research positions known regulators of small RNA-dependent gene silencing within a framework that facilitates mechanistic evaluation of epigenetic responses to exogenous and endogenous factors influencing DA neurodegeneration, revealing a path toward new targets for therapeutic intervention of PD.
Assuntos
Proteínas de Caenorhabditis elegans , Doença de Parkinson , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/patologia , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, hydrothermal activity, and organic matter accumulation on the seafloor due to high sedimentation rates. In the hydrothermal sediments of Guaymas Basin, microbial community compositions and coexistence patterns change across steep gradients of temperature, potential carbon sources, and electron acceptors. Nonmetric multidimensional scaling and guanine-cytosine percentage analyses reveal that the bacterial and archaeal communities adjust compositionally to their local temperature regime. Functional inference using PICRUSt shows that microbial communities consistently maintain their predicted biogeochemical functions in different sediments. Phylogenetic profiling shows that microbial communities retain distinct sulfate-reducing, methane-oxidizing, or heterotrophic lineages within specific temperature windows. The preservation of similar biogeochemical functions across microbial lineages with different temperature adaptations stabilizes the hydrothermal microbial community in a highly dynamic environment. IMPORTANCE Hydrothermal vent sites have been widely studied to investigate novel bacteria and archaea that are adapted to these extreme environments. However, community-level analyses of hydrothermal microbial ecosystems look beyond the presence and activity of particular types of microbes and examine to what extent the entire community of bacteria and archaea is adapted to hydrothermal conditions; these include elevated temperatures, hydrothermally generated carbon sources, and inorganic electron donors and acceptors that are characteristic for hydrothermal environments. In our case study of bacterial and archaeal communities in hydrothermal sediments of Guaymas Basin, we found that sequence-inferred microbial function was maintained in differently structured bacterial and archaeal communities across different samples and thermal regimes. The resulting preservation of biogeochemical functions across thermal gradients is an important factor in explaining the consistency of the microbial core community in the dynamic sedimentary environment of Guaymas Basin.
Assuntos
Fontes Hidrotermais , Microbiota , Filogenia , Sedimentos Geológicos/microbiologia , Archaea/genética , Bactérias/genética , Carbono , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genéticaRESUMO
Microwave photonics offers a promising solution for frequency converting microwave signals, however, demonstrations so far have either been bulky fibre implementations or lacked rejection of interfering image signals. Here, we demonstrate the first microwave photonic mixer with image rejection of broadband signals utilising chip-based stimulated Brillouin scattering and interferometry. We demonstrate frequency down-conversion of carrier frequencies ranging from 10 GHz-16 GHz, ultra-high image rejection for a single tone of up to 70 dB, and 100 MHz and 400 MHz wide analogue signals with 28.5 dB and 16 dB image rejection, respectively. Furthermore, we down-convert 200 Mb/s quadrature-phase-shift keying signals with an error vector magnitude as low as -9.6 dB when simultaneously present interfering image signals are suppressed by the mixer.
RESUMO
True-time delays are important building blocks in modern radio frequency systems that can be implemented using integrated microwave photonics, enabling higher carrier frequencies, improved bandwidths, and a reduction in size, weight, and power. Stimulated Brillouin scattering (SBS) offers optically-induced continuously tunable delays and is thus ideal for applications that require programmable reconfiguration but previous approaches have been limited by large SBS gain requirements. Here, we overcome this limitation by using radio-frequency interferometry to enhance the Brillouin-induced delay applied to the optical sidebands that carry RF signals, while controlling the phase of the optical carrier with integrated silicon nitride microring resonators. We report a delay tunability over 600 ps exploiting an enhancement factor of 30, over a bandwidth of 1 GHz using less than 1 dB of Brillouin gain utilizing a photonic chip architecture based on Brillouin scattering and microring resonators.
RESUMO
Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in adr-2 mutants, normally encoding the only catalytically active ADAR in Caenorhabditis elegans, ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of xdh-1, the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration. Further, RNAi experiments show that WHT-2, the worm ortholog of the human ABCG2 transporter and a predicted interactor of XDH-1, is the rate-limiting factor in the ADR-2, XDH-1, WHT-2 system for dopaminergic neuroprotection. In silico structural modeling of WHT-2 indicates that the editing of one nucleotide in the wht-2 mRNA leads to the substitution of threonine with alanine at residue 124 in the WHT-2 protein, changing hydrogen bonds in this region. Thus, we propose a model where wht-2 is edited by ADR-2, which promotes optimal export of uric acid, a known substrate of WHT-2 and a product of XDH-1 activity. In the absence of editing, uric acid export is limited, provoking a reduction in xdh-1 transcription to limit uric acid production and maintain cellular homeostasis. As a result, elevation of uric acid is protective against dopaminergic neuronal cell death. In turn, increased levels of uric acid are associated with a decrease in ROS production. Further, downregulation of xdh-1 is protective against PD pathologies because decreased levels of XDH-1 correlate to a concomitant reduction in xanthine oxidase (XO), the form of the protein whose by-product is superoxide anion. These data indicate that modifying specific targets of RNA editing may represent a promising therapeutic strategy for PD.
RESUMO
Failure of inherently protective cellular processes and misfolded protein-associated stress contribute to the progressive loss of dopamine (DA) neurons characteristic of Parkinson's disease (PD). A disease-modifying role for the microbiome has recently emerged in PD, representing an impetus to employ the soil-dwelling nematode, Caenorhabditis elegans, as a preclinical model to correlate changes in gene expression with neurodegeneration in transgenic animals grown on distinct bacterial food sources. Even under tightly controlled conditions, hundreds of differentially expressed genes and a robust neuroprotective response were discerned between clonal C. elegans strains overexpressing human alpha-synuclein in the DA neurons fed either one of only two subspecies of Escherichia coli. Moreover, this neuroprotection persisted in a transgenerational manner. Genetic analysis revealed a requirement for the double-stranded RNA (dsRNA)-mediated gene silencing machinery in conferring neuroprotection. In delineating the contribution of individual genes, evidence emerged for endopeptidase activity and heme-associated pathway(s) as mechanistic components for modulating dopaminergic neuroprotection.
RESUMO
Microbial metabolisms and interactions that facilitate subsurface conversions of recalcitrant carbon to methane are poorly understood. We deployed an in situ enrichment device in a subsurface coal seam in the Powder River Basin (PRB), USA, and used BONCAT-FACS-Metagenomics to identify translationally active populations involved in methane generation from a variety of coal-derived aromatic hydrocarbons. From the active fraction, high-quality metagenome-assembled genomes (MAGs) were recovered for the acetoclastic methanogen, Methanothrix paradoxum, and a novel member of the Chlorobi with the potential to generate acetate via the Pta-Ack pathway. Members of the Bacteroides and Geobacter also encoded Pta-Ack and together, all four populations had the putative ability to degrade ethylbenzene, phenylphosphate, phenylethanol, toluene, xylene, and phenol. Metabolic reconstructions, gene analyses, and environmental parameters also indicated that redox fluctuations likely promote facultative energy metabolisms in the coal seam. The active "Chlorobi PRB" MAG encoded enzymes for fermentation, nitrate reduction, and multiple oxygenases with varying binding affinities for oxygen. "M. paradoxum PRB" encoded an extradiol dioxygenase for aerobic phenylacetate degradation, which was also present in previously published Methanothrix genomes. These observations outline underlying processes for bio-methane from subbituminous coal by translationally active populations and demonstrate activity-based metagenomics as a powerful strategy in next generation physiology to understand ecologically relevant microbial populations.
Assuntos
Metagenômica , Metano , Carvão Mineral , Metagenoma , Metano/metabolismo , Methanosarcinaceae/metabolismoRESUMO
Modern linkages among magmatic, geochemical, and geobiological processes provide clues about the importance of thermophiles in the origin of biogeochemical cycles. The aim of this study was to identify the primary chemoautotrophs and host-virus interactions involved in microbial colonization and biogeochemical cycling at sublacustrine, vapor-dominated vents that represent the hottest measured ecosystems in Yellowstone National Park (~140 °C). Filamentous microbial communities exposed to extreme thermal and geochemical gradients were sampled using a remotely operated vehicle and subjected to random metagenome sequencing and microscopic analyses. Sulfurihydrogenibium (phylum Aquificae) was the predominant lineage (up to 84% relative abundance) detected at vents that discharged high levels of dissolved H2, H2S, and CO2. Metabolic analyses indicated carbon fixation by Sulfurihydrogenibium spp. was powered by the oxidation of reduced sulfur and H2, which provides organic carbon for heterotrophic community members. Highly variable Sulfurihydrogenibium genomes suggested the importance of intra-population diversity under extreme environmental and viral pressures. Numerous lytic viruses (primarily unclassified taxa) were associated with diverse archaea and bacteria in the vent community. Five circular dsDNA uncultivated virus genomes (UViGs) of ~40 kbp length were linked to the Sulfurihydrogenibium metagenome-assembled genome (MAG) by CRISPR spacer matches. Four UViGs contained consistent genome architecture and formed a monophyletic cluster with the recently proposed Pyrovirus genus within the Caudovirales. Sulfurihydrogenibium spp. also contained CRISPR arrays linked to plasmid DNA with genes for a novel type IV filament system and a highly expressed ß-barrel porin. A diverse suite of transcribed secretion systems was consistent with direct microscopic analyses, which revealed an extensive extracellular matrix likely critical to community structure and function. We hypothesize these attributes are fundamental to the establishment and survival of microbial communities in highly turbulent, extreme-gradient environments.
Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota , Bactérias , Biofilmes , Filogenia , Enxofre/metabolismoRESUMO
Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study-subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes-offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon.
Assuntos
Carvão Mineral , Microbiota , Metagenômica , Metano , SulfatosRESUMO
A thermophilic methanogen was enriched in coculture from Washburn Hot Springs (Yellowstone National Park, USA), grown on carbon dioxide and hydrogen, and subsequently sequenced. The reconstructed 1.65-Mb genome sequence for Methanothermobacter thermautotrophicus WHS contributes to our understanding of hydrogenotrophic, CO2-reducing methanogenesis in geothermal ecosystems.
RESUMO
IscB proteins are putative nucleases encoded in a distinct family of IS200/IS605 transposons and are likely ancestors of the RNA-guided endonuclease Cas9, but the functions of IscB and its interactions with any RNA remain uncharacterized. Using evolutionary analysis, RNA sequencing, and biochemical experiments, we reconstructed the evolution of CRISPR-Cas9 systems from IS200/IS605 transposons. We found that IscB uses a single noncoding RNA for RNA-guided cleavage of double-stranded DNA and can be harnessed for genome editing in human cells. We also demonstrate the RNA-guided nuclease activity of TnpB, another IS200/IS605 transposon-encoded protein and the likely ancestor of Cas12 endonucleases. This work reveals a widespread class of transposon-encoded RNA-guided nucleases, which we name OMEGA (obligate mobile elementguided activity), with strong potential for developing as biotechnologies.
Assuntos
Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Elementos de DNA Transponíveis/genética , Endodesoxirribonucleases/genética , Evolução Molecular , RNA Guia de Cinetoplastídeos , Sequência Conservada , Código Genético , Variação Genética , RNA não Traduzido/genéticaRESUMO
We explore archaeal distributions in sedimentary subseafloor habitats of Guaymas Basin and the adjacent Sonora Margin, located in the Gulf of California, México. Sampling locations include (1) control sediments without hydrothermal or seep influence, (2) Sonora Margin sediments underlying oxygen minimum zone water, (3) compacted, highly reduced sediments from a pressure ridge with numerous seeps at the base of the Sonora Margin, and (4) sediments impacted by hydrothermal circulation at the off-axis Ringvent site. Generally, archaeal communities largely comprise Bathyarchaeal lineages, members of the Hadesarchaea, MBG-D, TMEG, and ANME-1 groups. Variations in archaeal community composition reflect locally specific environmental challenges. Background sediments are divided into surface and subsurface niches. Overall, the environmental setting and history of a particular site, not isolated biogeochemical properties out of context, control the subseafloor archaeal communities in Guaymas Basin and Sonora Margin sediments.
RESUMO
Phylogenetic and geological evidence supports the hypothesis that life on Earth originated in thermal environments and conserved energy through methanogenesis or sulfur reduction. Here we describe two populations of the deeply rooted archaeal phylum Korarchaeota, which were retrieved from the metagenome of a circumneutral, suboxic hot spring that contains high levels of sulfate, sulfide, methane, hydrogen and carbon dioxide. One population is closely related to 'Candidatus Korarchaeum cryptofilum OPF8', while the more abundant korarchaeote, 'Candidatus Methanodesulfokores washburnensis', contains genes that are necessary for anaerobic methane and dissimilatory sulfur metabolisms. Phylogenetic and ancestral reconstruction analyses suggest that methane metabolism originated in the Korarchaeota, whereas genes for dissimilatory sulfite reduction were horizontally transferred to the Korarchaeota from the Firmicutes. Interactions among enzymes involved in both metabolisms could facilitate exergonic, sulfite-dependent, anaerobic oxidation of methane to methanol; alternatively, 'Ca. M. washburnensis' could conduct methanogenesis and sulfur reduction independently. Metabolic reconstruction suggests that 'Ca. M. washburnensis' is a mixotroph, capable of amino acid uptake, assimilation of methane-derived carbon and/or CO2 fixation by archaeal type III-b RuBisCO for scavenging ribose carbon. Our findings link anaerobic methane metabolism and dissimilatory sulfur reduction within a single deeply rooted archaeal population and have implications for the evolution of these traits throughout the Archaea.
Assuntos
Genoma Arqueal , Korarchaeota/genética , Korarchaeota/metabolismo , Metano/metabolismo , Enxofre/metabolismo , Anaerobiose , Genômica , Hidrogênio/metabolismo , Korarchaeota/classificação , Oxirredução , FilogeniaRESUMO
Methanogenesis is an ancient metabolism of key ecological relevance, with direct impact on the evolution of Earth's climate. Recent results suggest that the diversity of methane metabolisms and their derivations have probably been vastly underestimated. Here, by probing thousands of publicly available metagenomes for homologues of methyl-coenzyme M reductase complex (MCR), we have obtained ten metagenome-assembled genomes (MAGs) belonging to potential methanogenic, anaerobic methanotrophic and short-chain alkane-oxidizing archaea. Five of these MAGs represent under-sampled (Verstraetearchaeota, Methanonatronarchaeia, ANME-1 and GoM-Arc1) or previously genomically undescribed (ANME-2c) archaeal lineages. The remaining five MAGs correspond to lineages that are only distantly related to previously known methanogens and span the entire archaeal phylogeny. Comprehensive comparative annotation substantially expands the metabolic diversity and energy conservation systems of MCR-bearing archaea. It also suggests the potential existence of a yet uncharacterized type of methanogenesis linked to short-chain alkane/fatty acid oxidation in a previously undescribed class of archaea ('Candidatus Methanoliparia'). We redefine a common core of marker genes specific to methanogenic, anaerobic methanotrophic and short-chain alkane-oxidizing archaea, and propose a possible scenario for the evolutionary and functional transitions that led to the emergence of such metabolic diversity.
Assuntos
Alcanos/química , Archaea/metabolismo , Biodiversidade , Metano/metabolismo , Alcanos/metabolismo , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , DNA Arqueal , Metagenoma , Metano/química , Oxirredução , FilogeniaRESUMO
The Guaymas Basin spreading center, at 2000 m depth in the Gulf of California, is overlain by a thick sedimentary cover. Across the basin, localized temperature anomalies, with active methane venting and seep fauna exist in response to magma emplacement into sediments. These sites evolve over thousands of years as magma freezes into doleritic sills and the system cools. Although several cool sites resembling cold seeps have been characterized, the hydrothermally active stage of an off-axis site was lacking good examples. Here, we present a multidisciplinary characterization of Ringvent, an ~1 km wide circular mound where hydrothermal activity persists ~28 km northwest of the spreading center. Ringvent provides a new type of intermediate-stage hydrothermal system where off-axis hydrothermal activity has attenuated since its formation, but remains evident in thermal anomalies, hydrothermal biota coexisting with seep fauna, and porewater biogeochemical signatures indicative of hydrothermal circulation. Due to their broad potential distribution, small size and limited life span, such sites are hard to find and characterize, but they provide critical missing links to understand the complex evolution of hydrothermal systems.
RESUMO
Recent discoveries have shown that the marker gene for anaerobic methane cycling (mcrA) is more widespread in the Archaea than previously thought. However, it remains unclear whether novel mcrA genes associated with the Bathyarchaeota and Verstraetearchaeota are distributed across diverse environments. We examined two geochemically divergent but putatively methanogenic regions of Yellowstone National Park to investigate whether deeply-rooted archaea possess and express novel mcrA genes in situ. Small-subunit (SSU) rRNA gene analyses indicated that Bathyarchaeota were predominant in seven of ten sediment layers, while the Verstraetearchaeota and Euryarchaeota occurred in lower relative abundance. Targeted amplification of novel mcrA genes suggested that diverse taxa contribute to alkane cycling in geothermal environments. Two deeply-branching mcrA clades related to Bathyarchaeota were identified, while highly abundant verstraetearchaeotal mcrA sequences were also recovered. In addition, detection of SSU rRNA and mcrA transcripts from one hot spring suggested that predominant Bathyarchaeota were also active, and that methane cycling genes are expressed by the Euryarchaeota, Verstraetearchaeota, and an unknown lineage basal to the Bathyarchaeota. These findings greatly expand the diversity of the key marker gene for anaerobic alkane cycling and outline the need for greater understanding of the functional capacity and phylogenetic affiliation of novel mcrA variants.
Assuntos
Archaea/genética , Enzimas de Restrição do DNA/genética , Expressão Gênica , Variação Genética , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Biodiversidade , Fenômenos Químicos , Sedimentos Geológicos/química , Fontes Termais/química , Filogenia , RNA Ribossômico 16S/genética , TemperaturaRESUMO
A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer of 2011 did not show a consistent bacterial community signature, suggesting that the bacterial community was no longer shaped by the DWH fallout of oil-derived marine snow, but instead by location-specific and seasonal factors.
RESUMO
Extreme thermal gradients and compressed metabolic zones limit the depth range of microbial colonization in hydrothermally active sediments at Guaymas Basin. We investigated the physicochemical characteristics of this ecosystem and their influence on microbial community structure. Temperature-related trends of δ(13)C values of methane and dissolved inorganic carbon from 36 sediment cores suggest in situ thermal limits for microbial anaerobic methane oxidation and organic carbon re-mineralization near 80°C and 100°C respectively. Temperature logging probes deposited in hydrothermal sediments for 8 days demonstrate substantial thermal fluctuations of up to 25°C. Putative anaerobic methanotroph (ANME) populations dominate the archaeal community, transitioning from ANME-1 archaea in warm surficial sediments towards ANME-1 Guaymas archaea as temperatures increase downcore. Since ANME archaea performing anaerobic oxidation of methane double on longer time scales (months) compared with relatively rapid in situ temperature fluctuations (hours to days), we conclude that ANME archaea possess a high tolerance for short-term shifts in the thermal regime.
Assuntos
Archaea/classificação , Biota , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Fontes Hidrotermais/microbiologia , Filogeografia , Temperatura , Anaerobiose , Archaea/genética , California , Carbono/análise , Metano/análiseRESUMO
The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region.
RESUMO
The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed "Mat Mound") were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.