RESUMO
INTRODUCTION: Melatonin has been suggested an adjunctive therapy in neonatal encephalopathy (NE). Melatonin reduces oxidative stress and neutrophil activation; however, the immunological effects in NE have not been studied. METHODS: Infants with NE and neonatal controls were prospectively recruited. Whole blood was sampled in the first week of life. Following endotoxin and or melatonin treatment, diurnal variation was measured by RT PCR for circadian rhythm genes (brain and Muscle Arnt-Like protein [BMAL1], circadian locomotor output cycles kaput [CLOCK], Nuclear Receptor Subfamily 1 Group D Member 2 [REV Erß], and cryptochrome circadian clock [CRY]). Neutrophil and monocyte cell surface markers of activation CD11b, reactive oxygen intermediates (ROIs), and Toll-like receptor (TLR)-4 were also examined by flow cytometry in matching samples. RESULTS: Serum and RNA samples from forty infants were included (controls n = 20; NE n = 20) over the first week of life. Melatonin reduced neutrophil CD11b and TLR-4 expression in response to LPS in infants with NE compared to controls. There were no differences in ROIs. BMAL1 and CLOCK baseline gene expression levels were similar. BMAL1 was significantly decreased with LPS stimulation in NE. There was no significant diurnal variation in melatonin, neutrophil, and monocyte function or circadian genes. CONCLUSIONS: Melatonin alters immune function ex vivo in infants with NE. Infants with NE have altered immune circadian responses following LPS stimulation, which have potential for modulation.
Assuntos
Encefalopatias , Melatonina , Recém-Nascido , Humanos , Lactente , Lipopolissacarídeos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Espécies Reativas de Oxigênio/metabolismo , ImunidadeRESUMO
The majority of oesophageal adenocarcinoma (OAC) patients do not respond to multimodal treatment regimens and face dismal survival rates. Natural killer (NK) cells are crucial anti-tumour immune cells, and this study investigated the susceptibility of treatment-resistant OAC cells to these potent tumour killers. Natural killer receptor (NKR) ligand expression by OE33CisP (cisplatin-sensitive) and OE33CisR (cisplatin-resistant) cells was investigated. The immunomodulatory effects of OE33CisP and OE33CisR cells on NK cell phenotype and function were assessed. Finally, the impact of chemotherapy regimens on NKR ligand shedding was examined. Our data revealed significantly less surface expression of activating ligands B7-H6, MICA/B, ULBP-3 and activating/inhibitory ligands PVRL-1 and PVRL-4 by OE33CisR cells, compared to OE33CisP cells. Co-culture with OE33CisR cells reduced the frequencies of NKp30+ and NKp46+ NK cells and increased frequencies of TIGIT+, FasL+ and TRAIL+ NK cells. Frequencies of IFN-γ-producing NK cells increased while frequencies of TIM-3+ NK cells decreased after culture with OE33CisP and OE33CisR cells. Frequencies of circulating NKp30+ NK cells were significantly lower in OAC patients with the poorest treatment response and in patients who received FLOT chemotherapy, while B7-H6 shedding by OAC tumour cells was induced by FLOT. Overall, OE33CisR cells express less activating NKR ligands than OE33CisP cells and have differential effects on NKR expression by NK cells. However, neither cell line significantly dampened NK cell cytokine production, death receptor expression or degranulation. In addition, our data indicate that FLOT chemotherapy may promote B7-H6 shedding and immune evasion with detrimental consequences in OAC patients.
Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Cisplatino , Ligantes , Células Matadoras Naturais , Neoplasias Esofágicas/tratamento farmacológicoRESUMO
Unusually for a viral infection, the immunological phenotype of severe COVID-19 is characterised by a depleted lymphocyte and elevated neutrophil count, with the neutrophil-to-lymphocyte ratio correlating with disease severity. Neutrophils are the most abundant immune cell in the bloodstream and comprise different subpopulations with pleiotropic actions that are vital for host immunity. Unique neutrophil subpopulations vary in their capacity to mount antimicrobial responses, including NETosis (the generation of neutrophil extracellular traps), degranulation and de novo production of cytokines and chemokines. These processes play a role in antiviral immunity, but may also contribute to the local and systemic tissue damage seen in acute SARS-CoV-2 infection. Neutrophils also contribute to complications of COVID-19 such as thrombosis, acute respiratory distress syndrome and multisystem inflammatory disease in children. In this Progress review, we discuss the anti-viral and pathological roles of neutrophils in SARS-CoV-2 infection, and potential therapeutic strategies for COVID-19 that target neutrophil-mediated inflammatory responses.
Assuntos
COVID-19 , Armadilhas Extracelulares , COVID-19/complicações , Humanos , Neutrófilos , SARS-CoV-2 , Síndrome de Resposta Inflamatória SistêmicaRESUMO
Protein C plays a major role in the physiological regulation of coagulation pathways through inactivation of factor Va, factor VIIIa, and plasminogen activator inhibitor. Protein C is involved in the control of inflammation during sepsis, by inhibiting release of pro-inflammatory cytokines, thereby controlling neutrophil, and monocyte effects on injured tissue. Recombinant human activated protein C (rhAPC) reduced mortality in adult sepsis in earlier studies but had no significant benefit in more recent trials. Protein C levels are reduced during paediatric and neonatal sepsis, which may play a major role in the development of disseminated intravascular thrombosis, purpura fulminans, and multiorgan dysfunction. The role of protein C in paediatric sepsis requires further clinical and immunological evaluation to define the patient subgroups who may benefit from this therapy. Newer versions of rhAPC are under development with less risk of haemorrhage potentially broadening the scope of this intervention.
RESUMO
Neutrophils are the most abundant innate immune cell with critical anti-microbial functions. Since the discovery of granulocytes at the end of the nineteenth century, the cells have been given many names including phagocytes, polymorphonuclear neutrophils (PMN), granulocytic myeloid derived suppressor cells (G-MDSC), low density neutrophils (LDN) and tumor associated neutrophils (TANS). This lack of standardized nomenclature for neutrophils suggest that biologically distinct populations of neutrophils exist, particularly in disease, when in fact these may simply be a manifestation of the plasticity of the neutrophil as opposed to unique populations. In this review, we profile the surface markers and granule expression of each stage of granulopoiesis to offer insight into how each stage of maturity may be identified. We also highlight the remarkable surface marker expression profiles between the supposed neutrophil populations.
Assuntos
Regulação da Expressão Gênica/imunologia , Células Supressoras Mieloides , Neutrófilos , Vesículas Secretórias , Humanos , Células Supressoras Mieloides/classificação , Células Supressoras Mieloides/imunologia , Neutrófilos/classificação , Neutrófilos/imunologia , Vesículas Secretórias/classificação , Vesículas Secretórias/imunologia , Terminologia como AssuntoRESUMO
Background: Neonatal encephalopathy (NE) is associated with adverse neurodevelopmental outcome and is linked with systemic inflammation. Pro-inflammatory and anti-inflammatory cytokines are known to play a role in the pathology of NE by activating innate immune cells. Methods: Eighty-seven infants were enrolled including 53 infants with NE of whom 52 received therapeutic hypothermia (TH) and 34 term infant healthy controls (TC). Whole blood sampling was performed in the first 4 days of life, and a 14-spot ELISA Multiplex Cytokine Array was carried out on baseline samples or after stimulation with lipopolysaccharide (LPS) as an additional inflammatory stimulus. The cytokine medians were examined for differences between infants with NE and healthy TC; and then short-term outcomes of Sarnat stage, seizures, and MRI brain were examined within the NE group. The potential of LPS stimulation to predict abnormal MRI was explored using receiver operating characteristic (ROC) curves. Results: At baseline, infants with NE had significantly higher levels of erythropoietin (Epo), interleukin (IL)-6, and IL-1ra and significantly lower vascular endothelial growth factor (VEGF) than had controls. All cytokines were increased after LPS stimulation in infants with NE with an excessive Epo and IL-1ra response than in controls. Infants with NE had lower IL-8, IL-2, IL-6, tumor necrosis factor (TNF)-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), VEGF, and interferon (IFN)-γ than controls had following LPS. GM-CSF and IFN-γ, IL-1ß, IL-1ra, and VEGF were higher on days 1-2 in NE infants with abnormal neuroimaging. GM-CSF, IFN-γ, and TNF-α levels with LPS stimulation were different upon stimulation between normal and abnormal neuroimaging. TNF-α is the only strong cytokine predictor both pre- and post-LPS stimulation of abnormal brain imaging. Conclusions: Altered cytokine responses are found in infants with NE vs. controls, and more significant differences are unmasked by the additional stimulus of LPS, which potentially improves the predictive power of these cytokines for the detection of abnormal MRIs. Infants with NE undergoing TH demonstrate both trained immunity and tolerance, and understanding these responses will facilitate adjunctive immunomodulatory treatments.
RESUMO
Neonatal encephalopathy (NE) is a significant cause of morbidity and mortality. Persistent inflammation and activation of leukocytes mediate brain injury in NE. The standard of care for NE, therapeutic hypothermia (TH), does not improve outcomes in nearly half of moderate to severe cases, resulting in the need for new adjuvant therapies, and immunomodulation holds promise. Our objective was to explore systemic leukocyte phenotype in infants with NE and healthy controls in response to lipopolysaccharide (LPS). Twenty-four infants with NE (NE II-20; NE III = 4) requiring TH and 17 term neonatal controls were enrolled, and blood samples were analyzed between days 1 and 4 of life at a mean (SD) timepoint of 2.1 (± 0.81) days of postnatal life at the time of the routine phlebotomy. Leukocyte cell surface expression levels of Toll-like receptor 4, NADPH oxidase (NOX2), CD11b, mitochondrial mass, and mitochondrial superoxide production were measured by flow cytometry. Gene expression of TRIF (TIR domain-containing adapter-inducing interferon-ß), MyD88 and IRAK4 was measured by reverse transcription-polymerase chain reaction. Infants with NE had significantly lower expression of neutrophil CD11b and NOX2 with LPS stimulation compared to healthy term controls. Mitochondrial mass in neutrophils and monocytes was significantly increased in NE infants with LPS compared to controls, potentially indicating a dysregulated metabolism. Infants with NE had significantly lower IRAK4 at baseline than controls. NE infants display a dysregulated inflammatory response compared to healthy infants, with LPS hyporesponsiveness to CD11b and NOX2 and decreased IRAK4 gene expression. This dysregulated immune profile may indicate an adaptable response to limit hyperinflammation.