RESUMO
STUDY DESIGN: Retrospective analysis. OBJECTIVE: To assess the impact of mean arterial blood pressure (MAP) during surgical intervention for spinal cord injury (SCI) on motor recovery. SETTING: Level-one Trauma Hospital and Acute Rehabilitation Hospital in San Jose, CA, USA. METHODS: Twenty-five individuals with traumatic SCI who received surgical and acute rehabilitation care at a level-one trauma center were included in this study. The Surgical Information System captured intraoperative MAPs on a minute-by-minute basis and exposure was quantified at sequential thresholds from 50 to 104 mmHg. Change in International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor score was calculated based on physiatry evaluations at the earliest postoperative time and at discharge from acute rehabilitation. Linear regression models were used to estimate the rate of recovery across the entire MAP range. RESULTS: An exploratory analysis revealed that increased time within an intraoperative MAP range (70-94 mmHg) was associated with ISNCSCI motor score improvement. A significant regression equation was found for the MAP range 70-94 mmHg (F[1, 23] = 5.07, r2 = 0.181, p = 0.034). ISNCSCI motor scores increased 0.039 for each minute of exposure to the MAP range 70-94 mmHg during the operative procedure; this represents a significant correlation between intraoperative time with MAP 70-94 and subsequent motor recovery. Blood pressure exposures above or below this range did not display a positive association with motor recovery. CONCLUSIONS: Hypertension as well as hypotension during surgery may impact the trajectory of recovery in individuals with SCI, and there may be a direct relationship between intraoperative MAP and motor recovery.
Assuntos
Pressão Arterial , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/cirurgia , Adulto , Pressão Arterial/fisiologia , Determinação da Pressão Arterial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória , Recuperação de Função Fisiológica/fisiologia , Estudos Retrospectivos , Traumatismos da Medula Espinal/fisiopatologia , Fatores de TempoRESUMO
A correction to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
STUDY DESIGN: Systematic review update. OBJECTIVES: Interventions that aim to optimize spinal cord perfusion are thought to play an important role in minimizing secondary ischemic damage and improving outcomes in patients with acute traumatic spinal cord injuries (SCIs). However, exactly how to optimize spinal cord perfusion and enhance neurologic recovery remains controversial. We performed an update of a recent systematic review (Evaniew et al, J. Neurotrauma 2020) to evaluate the effects of Mean Arterial Pressure (MAP) support or Spinal Cord Perfusion Pressure (SCPP) support on neurological recovery and rates of adverse events among patients with acute traumatic SCI. METHODS: We searched PubMed/MEDLINE, EMBASE and ClinicalTrials.gov for new published reports. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. We implemented the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach to rate confidence in the quality of the evidence. RESULTS: From 569 potentially relevant new citations since 2019, we identified 9 new studies for inclusion, which were combined with 19 studies from a prior review to give a total of 28 studies. According to low or very low quality evidence, the effect of MAP support on neurological recovery is uncertain, and increased SCPP may be associated with improved neurological recovery. Both approaches may involve risks for specific adverse events, but the importance of these adverse events to patients remains unclear. Very low quality evidence failed to yield reliable guidance about particular monitoring techniques, perfusion ranges, pharmacological agents, or durations of treatment. CONCLUSIONS: This update provides an evidence base to support the development of a new clinical practice guideline for the hemodynamic management of patients with acute traumatic SCI. While avoidance of hypotension and maintenance of spinal cord perfusion are important principles in the management of an acute SCI, the literature does not provide high quality evidence in support of a particular protocol. Further prospective, controlled research studies with objective validated outcome assessments are required to examine interventions to optimize spinal cord perfusion in this setting.
RESUMO
STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVE: Surgical decompression is a cornerstone in the management of patients with traumatic spinal cord injury (SCI); however, the influence of the timing of surgery on neurological recovery after acute SCI remains controversial. This systematic review aims to summarize current evidence on the effectiveness, safety, and cost-effectiveness of early (≤24 hours) or late (>24 hours) surgery in patients with acute traumatic SCI for all levels of the spine. Furthermore, this systematic review aims to evaluate the evidence with respect to the impact of ultra-early surgery (earlier than 24 hours from injury) on these outcomes. METHODS: A systematic search of the literature was performed using the MEDLINE database (PubMed), Cochrane database, and EMBASE. Two reviewers independently screened the citations from the search to determine whether an article satisfied predefined inclusion and exclusion criteria. For all key questions, we focused on primary studies with the least potential for bias and those that controlled for baseline neurological status and specified time from injury to surgery. Risk of bias of each article was assessed using standardized tools based on study design. Finally, the overall strength of evidence for the primary outcomes was assessed using the GRADE approach. Data were synthesized both qualitatively and quantitively using meta-analyses. RESULTS: Twenty-one studies met inclusion and exclusion criteria and formed the evidence base for this review update. Seventeen studies compared outcomes between patients treated with early (≤24 hours from injury) compared to late (>24 hours) surgical decompression. An additional 4 studies evaluated even earlier time frames: <4, <5, <8 or <12 hours. Based on moderate evidence, patients were 2 times more likely to recover by ≥ 2 grades on the ASIA Impairment Score (AIS) at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, moderate evidence suggested that patients receiving early decompression had an additional 4.50 (95% CI 1.70 to 7.29) point improvement on the ASIA motor score. With respect to administrative outcomes, there was low evidence that early decompression may decrease acute hospital length of stay. In terms of safety, there was moderate evidence that suggested the rate of major complications does not differ between patients undergoing early compared to late surgery. Furthermore, there was no difference in rates of mortality, surgical device-related complications, sepsis/systemic infection or neurological deterioration based on timing of surgery. Firm conclusions were not possible with respect to the impact of ultra-early surgery on neurological, functional or safety outcomes given the poor-quality studies, imprecision and the overlap in the time frames examined. CONCLUSIONS: This review provides an evidence base to support the update on clinical practice guidelines related to the timing of surgical decompression in acute SCI. Overall, the strength of evidence was moderate that early surgery (≤24 hours from injury) compared to late (>24 hours) results in clinically meaningful improvements in neurological recovery. Further studies are required to delineate the role of ultra-early surgery in patients with acute SCI.
RESUMO
STUDY DESIGN: Clinical practice guideline development following the GRADE process. OBJECTIVES: Hemodynamic management is one of the only available treatment options that likely improves neurologic outcomes in patients with acute traumatic spinal cord injury (SCI). Augmenting mean arterial pressure (MAP) aims to improve blood perfusion and oxygen delivery to the injured spinal cord in order to minimize secondary ischemic damage to neural tissue. The objective of this guideline was to update the 2013 AANS/CNS recommendations on the hemodynamic management of patients with acute traumatic SCI, acknowledging that much has been published in this area since its publication. Specifically, we sought to make recommendations on 1. The range of mean arterial pressure (MAP) to be maintained by identifying an upper and lower MAP limit; 2. The duration of such MAP augmentation; and 3. The choice of vasopressor. Additionally, we sought to make a recommendation on spinal cord perfusion pressure (SCPP) targets. METHODS: A multidisciplinary guideline development group (GDG) was formed that included health care professionals from a wide range of clinical specialities, patient advocates, and individuals living with SCI. The GDG reviewed the 2013 AANS/CNS guidelines and voted on whether each recommendation should be endorsed or updated. A systematic review of the literature, following PRISMA standards and registered in PROSPERO, was conducted to inform the guideline development process and address the following key questions: (i) what are the effects of goal-directed interventions to optimize spinal cord perfusion on extent of neurological recovery and rates of adverse events at any time point of follow-up? and (ii) what are the effects of particular monitoring techniques, perfusion ranges, pharmacological agents, and durations of treatment on extent of neurological recovery and rates of adverse events at any time point of follow-up? The GDG combined the information from this systematic review with their clinical expertise in order to develop recommendations on a MAP target range (specifically an upper and lower limit to target), the optimal duration for MAP augmentation, and the use of vasopressors or inotropes. Using methods outlined by the GRADE working group, recommendations were formulated that considered the balance of benefits and harms, financial impact, acceptability, feasibility and patient preferences. RESULTS: The GDG suggested that MAP should be augmented to at least 75-80 mmHg as the "lower limit," but not actively augmented beyond an "upper limit" of 90-95 mmHg in order to optimize spinal cord perfusion in acute traumatic SCI. The quality of the evidence around the "target MAP" was very low, and thus the strength of this recommendation is weak. For duration of hemodynamic management, the GDG "suggested" that MAP be augmented for a duration of 3-7 days. Again, the quality of the evidence around the duration of MAP support was very low, and thus the strength of this recommendation is also weak. The GDG felt that a recommendation on the choice of vasopressor or the use of SCPP targets was not warranted, given the dearth of available evidence. CONCLUSION: We provide new recommendations for blood pressure management after acute SCI that acknowledge the limitations of the current evidence on the relationship between MAP and neurologic recovery. It was felt that the low quality of existing evidence and uncertainty around the relationship between MAP and neurologic recovery justified a greater range of MAP to target, and for a broader range of days post-injury than recommended in previous guidelines. While important knowledge gaps still remain regarding hemodynamic management, these recommendations represent current perspectives on the role of MAP augmentation for acute SCI.
RESUMO
STUDY DESIGN: Clinical practice guideline development. OBJECTIVES: Acute spinal cord injury (SCI) can result in devastating motor, sensory, and autonomic impairment; loss of independence; and reduced quality of life. Preclinical evidence suggests that early decompression of the spinal cord may help to limit secondary injury, reduce damage to the neural tissue, and improve functional outcomes. Emerging evidence indicates that "early" surgical decompression completed within 24 hours of injury also improves neurological recovery in patients with acute SCI. The objective of this clinical practice guideline (CPG) is to update the 2017 recommendations on the timing of surgical decompression and to evaluate the evidence with respect to ultra-early surgery (in particular, but not limited to, <12 hours after acute SCI). METHODS: A multidisciplinary, international, guideline development group (GDG) was formed that consisted of spine surgeons, neurologists, critical care specialists, emergency medicine doctors, physical medicine and rehabilitation professionals, as well as individuals living with SCI. A systematic review was conducted based on accepted methodological standards to evaluate the impact of early (within 24 hours of acute SCI) or ultra-early (in particular, but not limited to, within 12 hours of acute SCI) surgery on neurological recovery, functional outcomes, administrative outcomes, safety, and cost-effectiveness. The GRADE approach was used to rate the overall strength of evidence across studies for each primary outcome. Using the "evidence-to-recommendation" framework, recommendations were then developed that considered the balance of benefits and harms, financial impact, patient values, acceptability, and feasibility. The guideline was internally appraised using the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool. RESULTS: The GDG recommended that early surgery (≤24 hours after injury) be offered as the preferred option for adult patients with acute SCI regardless of level. This recommendation was based on moderate evidence suggesting that patients were 2 times more likely to recover by ≥ 2 ASIA Impairment Score (AIS) grades at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, patients undergoing early surgery improved by an additional 4.50 (95% 1.70 to 7.29) points on the ASIA Motor Score compared to patients undergoing surgery after 24 hours post-injury. The GDG also agreed that a recommendation for ultra-early surgery could not be made on the basis of the current evidence because of the small sample sizes, variable definitions of what constituted ultra-early in the literature, and the inconsistency of the evidence. CONCLUSIONS: It is recommended that patients with an acute SCI, regardless of level, undergo surgery within 24 hours after injury when medically feasible. Future research is required to determine the differential effectiveness of early surgery in different subpopulations and the impact of ultra-early surgery on neurological recovery. Moreover, further work is required to define what constitutes effective spinal cord decompression and to individualize care. It is also recognized that a concerted international effort will be required to translate these recommendations into policy.
RESUMO
STUDY DESIGN: Development of a clinical practice guideline following the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) process. OBJECTIVE: The objectives of this study were to develop guidelines that outline the utility of intraoperative neuromonitoring (IONM) to detect intraoperative spinal cord injury (ISCI) among patients undergoing spine surgery, to define a subset of patients undergoing spine surgery at higher risk for ISCI and to develop protocols to prevent, diagnose, and manage ISCI. METHODS: All systematic reviews were performed according to PRISMA standards and registered on PROSPERO. A multidisciplinary, international Guidelines Development Group (GDG) reviewed and discussed the evidence using GRADE protocols. Consensus was defined by 80% agreement among GDG members. A systematic review and diagnostic test accuracy (DTA) meta-analysis was performed to synthesize pooled evidence on the diagnostic accuracy of IONM to detect ISCI among patients undergoing spinal surgery. The IONM modalities evaluated included somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs), electromyography (EMG), and multimodal neuromonitoring. Utilizing this knowledge and their clinical experience, the multidisciplinary GDG created recommendations for the use of IONM to identify ISCI in patients undergoing spine surgery. The evidence related to existing care pathways to manage ISCI was summarized and based on this a novel AO Spine-PRAXIS care pathway was created. RESULTS: Our recommendations are as follows: (1) We recommend that intraoperative neurophysiological monitoring be employed for high risk patients undergoing spine surgery, and (2) We suggest that patients at "high risk" for ISCI during spine surgery be proactively identified, that after identification of such patients, multi-disciplinary team discussions be undertaken to manage patients, and that an intraoperative protocol including the use of IONM be implemented. A care pathway for the prevention, diagnosis, and management of ISCI has been developed by the GDG. CONCLUSION: We anticipate that these guidelines will promote the use of IONM to detect and manage ISCI, and promote the use of preoperative and intraoperative checklists by surgeons and other team members for high risk patients undergoing spine surgery. We welcome teams to implement and evaluate the care pathway created by our GDG.
RESUMO
The management of chronic respiratory insufficiency and/or long-term inability to breathe independently has traditionally been via positive-pressure ventilation through a mechanical ventilator. Although life-sustaining, it is associated with limitations of function, lack of independence, decreased quality of life, sleep disturbance, and increased risk for infections. In addition, its mechanical and electronic complexity requires full understanding of the possible malfunctions by patients and caregivers. Ventilator-associated pneumonia, tracheal injury, and equipment malfunction account for common complications of prolonged ventilation, and respiratory infections are the most common cause of death in spinal cord-injured patients. The development of functional electric stimulation (FES) as an alternative to mechanical ventilation has been motivated by a goal to improve the quality of life of affected individuals. In this article, we will review the physiology, types, characteristics, risks and benefits, surgical techniques, and complications of the 2 commercially available FES strategies - phrenic nerve pacing (PNP) and diaphragm motor point pacing (DMPP).
RESUMO
INTRODUCTION AND IMPORTANCE: Pseudomeningocele formation from incidental durotomy is a known risk in spine surgery. We present a case of incidental durotomy leading to anterior neck pseudomeningocele, compressing the carotid body (CB) resulting in syncopal episodes. To our knowledge, this is the first case report implicating syncopal episodes to CB compression via a pseudomeningocele. CASE PRESENTATION: A mid sixty-year-old patient with history of obesity, hypertension, and diabetes presented with gait impairment and hand weakness. Ossification of posterior longitudinal ligament (OPLL) was diagnosed with computed tomography imaging (CT) and magnetic resonance imaging (MRI). Elective surgery was completed with an anterior and posterior approach for decompression and fusion. Hospital course (San Jose, CA, USA) was complicated by respiratory depression and incomplete tetraplegia. On post-operative day (POD) six, CT revealed anterolateral soft tissue neck swelling; subsequent CT and MRI showed fluid collection expansion, with associated syncopal episodes on POD thirty-nine. Despite interventional radiology drainage, the fluid collection and symptoms returned five days later. The patient ultimately underwent durotomy revision and repair with muscle patch. CLINICAL DISCUSSION: This case highlights the challenges in managing anterior cervical dural tears resulting in pseudomeningocele. Risk factors include anterior cervical corpectomy and decompression, as well as an underlying diagnosis of OPLL. Untreated dural tears may develop into pseudomeningoceles which can contribute to life-threatening outcomes. CONCLUSION: This case report presents the serious consequences of incidental durotomy, the unique post-surgical complication of syncope due to compression of the CB from a pseudomeningocele, and the challenges of managing a persistent pseudomeningocele.
RESUMO
OBJECTIVE: The primary objective of this study was to evaluate the safety of 3 escalating doses of oligodendrocyte progenitor cells (LCTOPC1; previously known as GRNOPC1 and AST-OPC1) administered at a single time point between 21 and 42 days postinjury to participants with subacute cervical spinal cord injuries (SCIs). The secondary objective was to evaluate changes in neurological function following administration of LCTOPC1. METHODS: This study was designed as an open-label, dose-escalation, multicenter clinical trial. Twenty-five participants with C4-7 American Spinal Injury Association Impairment Scale grade A or B injuries received a single dose of either 2 × 106, 1 × 107, or 2 × 107 LCTOPC1 delivered via intraparenchymal injection into the spinal cord at the site of injury using a custom-designed syringe positioning device. Low-dose tacrolimus was administered until day 60. Outcome measures included adverse event (AE) monitoring and neurological function as measured by the International Standards for Neurological Classification of Spinal Cord Injury. RESULTS: All 25 participants experienced at least one AE, with a total of 534 AEs (32 study-related vs 502 study-unrelated anticipated complications of SCI) reported at the completion of 1-year follow-up. There were 29 serious AEs reported. Two grade 3 serious AEs (CSF leak in one participant and a bacterial infection in another) were considered related to the injection procedure and to immunosuppression with tacrolimus, respectively. The CSF leakage resolved with sequelae, including self-limited altered mental status, and the infection resolved with antibiotic therapy. For all participants, MRI scans demonstrated no evidence of an enlarging mass, spinal cord damage related to the injection procedure, inflammatory lesions in the spinal cord, or masses in the ventricular system. At 1-year follow-up, 21/22 (96%) of the intention-to-treat group recovered one or more levels of neurological function on at least one side of their body, and 7/22 (32%) recovered two or more levels of neurological function on at least one side of their body. CONCLUSIONS: LCTOPC1 can be safely administered to participants in the subacute period after cervical SCI. The injection procedure, low-dose temporary immunosuppression regimen, and LCTOPC1 were well tolerated. The safety and neurological function data support further investigation to determine the efficacy of LCTOPC1 in the treatment of SCI. Clinical trial registration no.: NCT02302157 (ClinicalTrials.gov).
Assuntos
Medula Cervical , Lesões do Pescoço , Células Precursoras de Oligodendrócitos , Traumatismos da Medula Espinal , Humanos , Medula Cervical/lesões , Tacrolimo/uso terapêuticoRESUMO
OBJECTIVE: The purpose of this study was to evaluate the safety of oligodendrocyte progenitor cells (LCTOPC1) derived from human pluripotent stem cells administered between 7 and 14 days postinjury to patients with T3 to T11 neurologically complete spinal cord injury (SCI). The rationale for this first-in-human trial was based on evidence that administration of LCTOPC1 supports survival and potential repair of key cellular components and architecture at the SCI site. METHODS: This study was a multisite, open-label, single-arm interventional clinical trial. Participants (n = 5) received a single intraparenchymal injection of 2 × 106 LCTOPC1 caudal to the epicenter of injury using a syringe positioning device. Immunosuppression with tacrolimus was administered for a total of 60 days. Participants were followed with annual in-person examinations and MRI for 5 years at the time of this report and will be followed with annual telephone questionnaires for 6 to 15 years postinjection. The primary endpoint was safety, as measured by the frequency and severity of adverse events related to the LCTOPC1 injection, the injection procedure, and/or the concomitant immunosuppression administered. The secondary endpoint was neurological function as measured by sensory scores and lower-extremity motor scores as measured by the International Standards for Neurological Classification of Spinal Cord Injury examinations. RESULTS: No unanticipated serious adverse events related to LCTOPC1 have been reported with 98% follow-up of participants (49 of 50 annual visits) through the first 10 years of the clinical trial. There was no evidence of neurological decline, enlarging masses, further spinal cord damage, or syrinx formation. MRI results during the long-term follow-up period in patients administered LCTOPC1 cells showed that 80% of patients demonstrated T2 signal changes consistent with the formation of a tissue matrix at the injury site. CONCLUSIONS: This study provides crucial first-in-human safety data supporting the pursuit of future human embryonic stem cell-derived therapies. While we cannot exclude the possibility of future adverse events, the experience in this trial provides evidence that this cell type can be well tolerated by patients, with an event-free period of up to 10 years. Based on the safety profile of LCTOPC1 obtained in this study, a cervical dose escalation trial was initiated (NCT02302157).
RESUMO
Background: Predicting neurological recovery after spinal cord injury (SCI) is challenging. Using topological data analysis, we have previously shown that mean arterial pressure (MAP) during SCI surgery predicts long-term functional recovery in rodent models, motivating the present multicenter study in patients. Methods: Intra-operative monitoring records and neurological outcome data were extracted (n = 118 patients). We built a similarity network of patients from a low-dimensional space embedded using a non-linear algorithm, Isomap, and ensured topological extraction using persistent homology metrics. Confirmatory analysis was conducted through regression methods. Results: Network analysis suggested that time outside of an optimum MAP range (hypotension or hypertension) during surgery was associated with lower likelihood of neurological recovery at hospital discharge. Logistic and LASSO (least absolute shrinkage and selection operator) regression confirmed these findings, revealing an optimal MAP range of 76-[104-117] mmHg associated with neurological recovery. Conclusions: We show that deviation from this optimal MAP range during SCI surgery predicts lower probability of neurological recovery and suggest new targets for therapeutic intervention. Funding: NIH/NINDS: R01NS088475 (ARF); R01NS122888 (ARF); UH3NS106899 (ARF); Department of Veterans Affairs: 1I01RX002245 (ARF), I01RX002787 (ARF); Wings for Life Foundation (ATE, ARF); Craig H. Neilsen Foundation (ARF); and DOD: SC150198 (MSB); SC190233 (MSB).
Spinal cord injury is a devastating condition that involves damage to the nerve fibers connecting the brain with the spinal cord, often leading to permanent changes in strength, sensation and body functions, and in severe cases paralysis. Scientists around the world work hard to find ways to treat or even repair spinal cord injuries but few patients with complete immediate paralysis recover fully. Immediate paralysis is caused by direct damage to neurons and their extension in the spinal cord. Previous research has shown that blood pressure regulation may be key in saving these damaged neurons, as spinal cord injuries can break the communication between nerves that is involved in controlling blood pressure. This can lead to a vicious cycle of dysregulation of blood pressure and limit the supply of blood and oxygen to the damaged spinal cord tissue, exacerbating the death of spinal neurons. Management of blood pressure is therefore a key target for spinal cord injury care, but so far, the precise thresholds to enable neurons to recover are poorly understood. To find out more, Torres-Espin, Haefeli et al. used machine learning software to analyze previously recorded blood pressure and heart rate data obtained from 118 patients that underwent spinal cord surgery after acute spinal cord injury. The analyses revealed that patients who suffered from either low or high blood pressure during surgery had poorer prospects of recovery. Statistical models confirming these findings showed that the optimal blood pressure range to ensure recovery lies between 76 to 104-117 mmHg. Any deviation from this narrow window would dramatically worsen the ability to recover. These findings suggests that dysregulated blood pressure during surgery affects to odds of recovery in patients with a spinal cord injury. Torres-Espin, Haefeli et al. provide specific information that could improve current clinical practice in trauma centers. In the future, such machine learning tools and models could help develop real-time models that could predict the likelihood of a patient's recovery following spinal cord injury and related neurological conditions.
Assuntos
Pressão Arterial , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Pressão Sanguínea , Humanos , Pessoa de Meia-Idade , Monitorização Intraoperatória , Estudos RetrospectivosRESUMO
A significant proportion (estimates range from 16 to 74%) of patients with spinal cord injury (SCI) have concomitant traumatic brain injury (TBI), and the combination often produces difficulties in planning and implementing rehabilitation strategies and drug therapies. For example, many of the drugs used to treat SCI may interfere with cognitive rehabilitation, and conversely drugs that are used to control seizures in TBI patients may undermine locomotor recovery after SCI. The current paper presents an experimental animal model for combined SCI and TBI to help drive mechanistic studies of dual diagnosis. Rats received a unilateral SCI (75 kdyn) at C5 vertebral level, a unilateral TBI (2.0 mm depth, 4.0 m/s velocity impact on the forelimb sensori-motor cortex), or both SCI+TBI. TBI was placed either contralateral or ipsilateral to the SCI. Behavioral recovery was examined using paw placement in a cylinder, grooming, open field locomotion, and the IBB cereal eating test. Over 6weeks, in the paw placement test, SCI+contralateral TBI produced a profound deficit that failed to recover, but SCI+ipsilateral TBI increased the relative use of the paw on the SCI side. In the grooming test, SCI+contralateral TBI produced worse recovery than either lesion alone even though contralateral TBI alone produced no observable deficit. In the IBB forelimb test, SCI+contralateral TBI revealed a severe deficit that recovered in 3 weeks. For open field locomotion, SCI alone or in combination with TBI resulted in an initial deficit that recovered in 2 weeks. Thus, TBI and SCI affected forelimb function differently depending upon the test, reflecting different neural substrates underlying, for example, exploratory paw placement and stereotyped grooming. Concurrent SCI and TBI had significantly different effects on outcomes and recovery, depending upon laterality of the two lesions. Recovery of function after cervical SCI was retarded by the addition of a moderate TBI in the contralateral hemisphere in all tests, but forepaw placements were relatively increased by an ipsilateral TBI relative to SCI alone, perhaps due to the dual competing injuries influencing the use of both forelimbs. These findings emphasize the complexity of recovery from combined CNS injuries, and the possible role of plasticity and laterality in rehabilitation, and provide a start towards a useful preclinical model for evaluating effective therapies for combine SCI and TBI.