RESUMO
Phosphorus (P) for carbon (C) exchange is the pivotal function of arbuscular mycorrhiza (AM), but how this exchange varies with soil P availability and among co-occurring plants in complex communities is still largely unknown. We collected intact plant communities in two regions differing c. 10-fold in labile inorganic P. After a 2-month glasshouse incubation, we measured 32P transfer from AM fungi (AMF) to shoots and 13C transfer from shoots to AMF using an AMF-specific fatty acid. AMF communities were assessed using molecular methods. AMF delivered a larger proportion of total shoot P in communities from high-P soils despite similar 13C allocation to AMF in roots and soil. Within communities, 13C concentration in AMF was consistently higher in grass than in blanketflower (Gaillardia aristata Pursh) roots, that is P appeared more costly for grasses. This coincided with differences in AMF taxa composition and a trend of more vesicles (storage structures) but fewer arbuscules (exchange structures) in grass roots. Additionally, 32P-for-13C exchange ratios increased with soil P for blanketflower but not grasses. Contrary to predictions, AMF transferred proportionally more P to plants in communities from high-P soils. However, the 32P-for-13C exchange differed among co-occurring plants, suggesting differential regulation of the AM symbiosis.
Assuntos
Carbono , Micorrizas , Fósforo , Solo , Micorrizas/fisiologia , Micorrizas/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Solo/química , Brotos de Planta/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Isótopos de Carbono , Plantas/metabolismo , Plantas/microbiologia , Meio Ambiente , Poaceae/metabolismoRESUMO
Million of acres of U.S. wildlands are sprayed with herbicides to control invasive species, but relatively little is known about non-target effects of herbicide use. We combined greenhouse, field, and laboratory experiments involving the invasive forb spotted knapweed (Centaurea stoebe) and native bunchgrasses to assess direct and indirect effects of the forb-specific herbicide picloram on arbuscular mycorrhizal fungi (AMF), which are beneficial soil fungi that colonize most plants. Picloram had no effect on bunchgrass viability and their associated AMF in the greenhouse, but killed spotted knapweed and reduced AMF colonization of a subsequent host grown. Results were similar in the field where AMF abundance in bunchgrass-dominated plots was unaffected by herbicides one year after spraying based on 16:1ω5 phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) concentrations. In spotted-knapweed-dominated plots, however, picloram application shifted dominance from spotted knapweed, a good AMF host, to bulbous bluegrass (Poa bulbosa), a poor AMF host. This coincided with a 63% reduction in soil 16:1ω5 NLFA concentrations but no reduction of 16:1ω5 PLFA. Because 16:1ω5 NLFA quantifies AMF storage lipids and 16:1ω5 PLFA occurs in AMF membrane lipids, we speculate that the herbicide-mediated reduction in host quality reduced fungal carbon storage, but not necessarily fungal abundance after one year in the field. Overall, in greenhouse and field experiments, AMF were only affected when picloram altered host quantity and quality. This apparent lack of direct effect was supported by our in-vitro trial where picloram applied to AMF mycelia did not reduce fungal biomass and viability. We show that the herbicide picloram can have profound, indirect effects on AMF within one year. Depending on herbicide-mediated shifts in host quality, rapid interventions may be necessary post herbicide applications to prevent loss of AMF abundance. Future research should assess consequences of these potential shifts for the restoration of native plants that differ in mycorrhizal dependency.
Assuntos
Centaurea/efeitos dos fármacos , Herbicidas/efeitos adversos , Micorrizas/efeitos dos fármacos , Picloram/efeitos adversos , Poaceae/efeitos dos fármacos , Centaurea/microbiologia , Montana , Poaceae/microbiologiaAssuntos
Remoção de Componentes Sanguíneos , COVID-19 , Miastenia Gravis , Distanciamento Físico , SARS-CoV-2/metabolismo , Idoso , COVID-19/sangue , COVID-19/prevenção & controle , COVID-19/terapia , COVID-19/transmissão , Humanos , Masculino , Miastenia Gravis/sangue , Miastenia Gravis/terapia , Miastenia Gravis/virologiaRESUMO
Soil biota can determine plant invasiveness, yet biogeographical comparisons of microbial community composition and function across ranges are rare. We compared interactions between Conyza canadensis, a global plant invader, and arbuscular mycorrhizal (AM) fungi in 17 plant populations in each native and non-native range spanning similar climate and soil fertility gradients. We then grew seedlings in the greenhouse inoculated with AM fungi from the native range. In the field, Conyza plants were larger, more fecund, and associated with a richer community of more closely related AM fungal taxa in the non-native range. Fungal taxa that were more abundant in the non-native range also correlated positively with plant biomass, whereas taxa that were more abundant in the native range appeared parasitic. These patterns persisted when populations from both ranges were grown together in a greenhouse; non-native populations cultured a richer and more diverse AM fungal community and selected AM fungi that appeared to be more mutualistic. Our results provide experimental support for evolution toward enhanced mutualism in non-native ranges. Such novel relationships and the rapid evolution of mutualisms may contribute to the disproportionate abundance and impact of some non-native plant species.
Assuntos
Micobioma , Micorrizas , Raízes de Plantas , Plantas , Solo , Microbiologia do Solo , SimbioseRESUMO
The extracellular matrix (ECM) of articular cartilage is structurally and mechanically inhomogeneous and anisotropic, exhibiting variations in composition, collagen fiber architecture, and pericellular matrix (PCM) morphology among the different zones (superficial, middle, and deep). Joint loading exposes chondrocytes to a complex biomechanical environment, as the microscale mechanical environment of the chondrocyte depends on the relative properties of its PCM and local ECM. ECM anisotropy and chondrocyte deformation are influenced by the split-line direction, the preferred collagen fiber orientation parallel to the articular surface. While previous studies have demonstrated that cartilage macroscale properties vary with depth and the direction of loading relative to the split-line direction, the potential anisotropic behavior of the ECM and PCM at the microscale has yet to be examined. The goal of this study was to characterize the depth and directional dependence of the microscale biomechanical properties of porcine cartilage ECM and PCM in situ. Cartilage was cryosectioned to generate samples oriented parallel and perpendicular to the split-line direction and normal to the articular surface. Atomic force microscopy (AFM)-based stiffness mapping was utilized to measure ECM and PCM microscale elastic properties in all three directions within each zone. Distinct anisotropy in ECM elastic moduli was observed in the superficial and deep zones, while the middle zone exhibited subtle anisotropy. PCM elastic moduli exhibited zonal uniformity with depth and directional dependence when pooled across the zones. These findings provide new evidence for mechanical inhomogeneity and anisotropy at the microscale in articular cartilage.