Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2315586121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498726

RESUMO

Heparins have been invaluable therapeutic anticoagulant polysaccharides for over a century, whether used as unfractionated heparin or as low molecular weight heparin (LMWH) derivatives. However, heparin production by extraction from animal tissues presents multiple challenges, including the risk of adulteration, contamination, prion and viral impurities, limited supply, insecure supply chain, and significant batch-to-batch variability. The use of animal-derived heparin also raises ethical and religious concerns, as well as carries the risk of transmitting zoonotic diseases. Chemoenzymatic synthesis of animal-free heparin products would offer several advantages, including reliable and scalable production processes, improved purity and consistency, and the ability to produce heparin polysaccharides with molecular weight, structural, and functional properties equivalent to those of the United States Pharmacopeia (USP) heparin, currently only sourced from porcine intestinal mucosa. We report a scalable process for the production of bioengineered heparin that is biologically and compositionally similar to USP heparin. This process relies on enzymes from the heparin biosynthetic pathway, immobilized on an inert support and requires a tailored N-sulfoheparosan with N-sulfo levels similar to those of porcine heparins. We also report the conversion of our bioengineered heparin into a LMWH that is biologically and compositionally similar to USP enoxaparin. Ultimately, we demonstrate major advances to a process to provide a potential clinical and sustainable alternative to porcine-derived heparin products.


Assuntos
Heparina de Baixo Peso Molecular , Heparina , Animais , Suínos , Heparina/metabolismo , Heparina de Baixo Peso Molecular/química , Anticoagulantes/química , Peso Molecular , Contaminação de Medicamentos
2.
PLoS Genet ; 19(12): e1011060, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055757

RESUMO

Mycobacterium abscessus is intrinsically resistant to antibiotics effective against other pathogenic mycobacteria largely due to the drug-induced expression of genes that confer resistance. WhiB7 is a major hub controlling the induction of resistance to ribosome-targeting antibiotics. It activates the expression of >100 genes, 7 of which are known determinants of drug resistance; the function of most genes within the regulon is however unknown, but some conceivably encode additional mechanisms of resistance. Furthermore, the hierarchy of gene expression within the regulon, if any, is poorly understood. In the present work we have identified 56 WhiB7 binding sites using chromatin immunoprecipitation sequencing (CHIP-Seq) which accounts for the WhiB7-dependent upregulation of 72 genes, and find that M. abscessus WhiB7 functions exclusively as a transcriptional activator at promoters recognized by σA/σB. We have investigated the role of 18 WhiB7 regulated genes in drug resistance. Our results suggest that while some genes within the regulon (eg. erm41, hflX, eis2 and the ABCFs) play a major role in resistance, others make smaller contributions (eg. MAB_4324c and MAB_1409c) and the observed hypersensitivity ΔMabwhiB7 is a cumulative effect of these individual contributions. Moreover, our CHIP-Seq data implicate additional roles of WhiB7 induced genes beyond antibiotic resistance. Finally, we identify a σH-dependent network in aminoglycoside and tigecycline resistance which is induced upon drug exposure and is further activated by WhiB7 demonstrating the existence of a crosstalk between components of the WhiB7-dependent and -independent circuits.


Assuntos
Antibacterianos , Mycobacterium abscessus , Antibacterianos/farmacologia , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Tigeciclina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
PLoS Genet ; 19(12): e1010900, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064526

RESUMO

Quorum sensing is a mechanism of bacterial cell-cell communication that relies on the production and detection of small molecule autoinducers, which facilitate the synchronous expression of genes involved in group behaviors, such as virulence factor production and biofilm formation. The Pseudomonas aeruginosa quorum sensing network consists of multiple interconnected transcriptional regulators, with the transcription factor, RhlR, acting as one of the main drivers of quorum sensing behaviors. RhlR is a LuxR-type transcription factor that regulates its target genes when bound to its cognate autoinducer, C4-homoserine lactone, which is synthesized by RhlI. RhlR function is also regulated by the metallo-ß-hydrolase enzyme, PqsE. We recently showed that PqsE binds RhlR to alter its affinity for promoter DNA, a new mechanism of quorum-sensing receptor activation. Here, we perform ChIP-seq analyses of RhlR to map the binding of RhlR across the P. aeruginosa genome, and to determine the impact of C4-homoserine lactone and PqsE on RhlR binding to different sites across the P. aeruginosa genome. We identify 40 RhlR binding sites, all but three of which are associated with genes known to be regulated by RhlR. C4-homoserine lactone is required for maximal binding of RhlR to many of its DNA sites. Moreover, C4-homoserine lactone is required for maximal RhlR-dependent transcription activation from all sites, regardless of whether it impacts RhlR binding to DNA. PqsE is required for maximal binding of RhlR to many DNA sites, with similar effects on RhlR-dependent transcription activation from those sites. However, the effects of PqsE on RhlR specificity are distinct from those of C4-homoserine lactone, and PqsE is sufficient for RhlR binding to some DNA sites in the absence of C4-homoserine lactone. Together, C4-homoserine lactone and PqsE are required for RhlR binding at the large majority of its DNA sites. Thus, our work reveals three distinct modes of activation by RhlR: i) when RhlR is unbound by autoinducer but bound by PqsE, ii) when RhlR is bound by autoinducer but not bound by PqsE, and iii) when RhlR is bound by both autoinducer and PqsE, establishing a stepwise mechanism for the progression of the RhlR-RhlI-PqsE quorum sensing pathway in P. aeruginosa.


Assuntos
Percepção de Quorum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Percepção de Quorum/genética , Pseudomonas aeruginosa/metabolismo , Regulação Bacteriana da Expressão Gênica , DNA/metabolismo , Proteínas de Bactérias/metabolismo
4.
bioRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993298

RESUMO

Mycobacterium abscessus causes acute and chronic pulmonary infection in patients with chronic lung damage. It is intrinsically resistance to antibiotics effective against other pathogenic mycobacteria largely due to the drug-induced expression of genes that confer resistance. Induction of genes upon exposure to ribosome targeting antibiotics proceeds via WhiB7-dependent and -independent pathways. WhiB7 controls the expression of >100 genes, a few of which are known determinants of drug resistance. The function of the vast majority of genes within the regulon is unknown, but some conceivably encode additional mechanisms of resistance. Furthermore, the hierarchy of gene expression within the regulon, if any, is poorly understood. In the present work we have identified 56 WhiB7 binding sites using chromatin immunoprecipitation sequencing (CHIP-Seq) which accounts for the WhiB7-dependent upregulation of 70 genes, and find that M. abscessus WhiB7 functions exclusively as a transcriptional activator at promoters recognized by σ A /σ B We have investigated the role of 18 WhiB7 regulated genes in drug resistance and demonstrated the role of MAB_1409c and MAB_4324c in aminoglycoside resistance. Further, we identify a σ H -dependent pathway in aminoglycoside and tigecycline resistance which is induced upon drug exposure and is further activated by WhiB7 demonstrating the existence of a crosstalk between components of the WhiB7-dependent and -independent circuits. Abstract Importance: The induction of multiple genes that confer resistance to structurally diverse ribosome-targeting antibiotics is funneled through the induction of a single transcriptional activator, WhiB7, by antibiotic-stalled ribosomes. This poses a severe restriction in M. abscessus therapy as treatment with one ribosome-targeting antibiotic confers resistance to all other ribosome-targeting antibiotics. Here we uncover the intricacies of the WhiB7 regulatory circuit, identify three previously unknown determinants of aminoglycoside resistance and unveil a communication between WhiB7 dependent and independent components. This not only expands our understanding of the antibiotic resistance potential of M. abscessus but can also inform the development of much needed therapeutic options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA