Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2203672119, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867827

RESUMO

Studies of dense carbon materials formed by bolide impacts or produced by laboratory compression provide key information on the high-pressure behavior of carbon and for identifying and designing unique structures for technological applications. However, a major obstacle to studying and designing these materials is an incomplete understanding of their fundamental structures. Here, we report the remarkable structural diversity of cubic/hexagonally (c/h) stacked diamond and their association with diamond-graphite nanocomposites containing sp3-/sp2-bonding patterns, i.e., diaphites, from hard carbon materials formed by shock impact of graphite in the Canyon Diablo iron meteorite. We show evidence for a range of intergrowth types and nanostructures containing unusually short (0.31 nm) graphene spacings and demonstrate that previously neglected or misinterpreted Raman bands can be associated with diaphite structures. Our study provides a structural understanding of the material known as lonsdaleite, previously described as hexagonal diamond, and extends this understanding to other natural and synthetic ultrahard carbon phases. The unique three-dimensional carbon architectures encountered in shock-formed samples can place constraints on the pressure-temperature conditions experienced during an impact and provide exceptional opportunities to engineer the properties of carbon nanocomposite materials and phase assemblages.

2.
Proc Natl Acad Sci U S A ; 119(34): e2204332119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35976880

RESUMO

Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Fosfotransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Microvilosidades/metabolismo , Fosforilação , Fosfotransferases/metabolismo
3.
J Biol Chem ; 298(11): 102563, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209820

RESUMO

RNA-binding proteins of the DBHS (Drosophila Behavior Human Splicing) family, NONO, SFPQ, and PSPC1 have numerous roles in genome stability and transcriptional and posttranscriptional regulation. Critical to DBHS activity is their recruitment to distinct subnuclear locations, for example, paraspeckle condensates, where DBHS proteins bind to the long noncoding RNA NEAT1 in the first essential step in paraspeckle formation. To carry out their diverse roles, DBHS proteins form homodimers and heterodimers, but how this dimerization influences DBHS localization and function is unknown. Here, we present an inducible GFP-NONO stable cell line and use it for live-cell 3D-structured illumination microscopy, revealing paraspeckles with dynamic, twisted elongated structures. Using siRNA knockdowns, we show these labeled paraspeckles consist of GFP-NONO/endogenous SFPQ dimers and that GFP-NONO localization to paraspeckles depends on endogenous SFPQ. Using purified proteins, we confirm that partner swapping between NONO and SFPQ occurs readily in vitro. Crystallographic analysis of the NONO-SFPQ heterodimer reveals conformational differences to the other DBHS dimer structures, which may contribute to partner preference, RNA specificity, and subnuclear localization. Thus overall, our study suggests heterodimer partner availability is crucial for NONO subnuclear distribution and helps explain the complexity of both DBHS protein and paraspeckle dynamics through imaging and structural approaches.


Assuntos
Paraspeckles , RNA Longo não Codificante , Humanos , Dimerização , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/genética
4.
Nat Mater ; 21(5): 555-563, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301475

RESUMO

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH- ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100-103 ps) to disentangle the water, polymer relaxation and OH- diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.


Assuntos
Polímeros , Água , Ânions , Troca Iônica , Íons , Membranas Artificiais , Polímeros/química , Água/química
5.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220340, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691469

RESUMO

Amyloid fibrils have been associated with human disease for many decades, but it has also become apparent that they play a functional, non-disease-related role in e.g. bacteria and mammals. Moreover, they have been shown to possess interesting mechanical properties that can be harnessed for future man-made applications. Here, the mechanical behaviour of SSTSAA microcrystals has been investigated. The SSTSAA peptide organization in these microcrystals has been related to that in the corresponding amyloid fibrils. Using high-pressure X-ray diffraction experiments, the bulk modulus K, which is the reciprocal of the compressibility ß, has been calculated to be 2.48 GPa. This indicates that the fibrils are tightly packed, although the packing of most native globular proteins is even better. It is shown that the value of the bulk modulus is mainly determined by the compression along the c-axis, that relates to the inter-sheet distance in the fibrils. These findings corroborate earlier data obtained by AFM and molecular dynamics simulations that showed that mechanical resistance varies according to the direction of the applied strain, which can be related to packing and hydrogen bond contributions. Pressure experiments provide complementary information to these techniques and help to acquire a full mechanical characterization of biomolecular assemblies. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.


Assuntos
Amiloide , Compressão de Dados , Animais , Humanos , Difração de Raios X , Mamíferos
6.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220337, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691462

RESUMO

The crystalline graphitic carbon nitride, poly-triazine imide (PTI) is highly unusual among layered materials since it is spontaneously soluble in aprotic, polar solvents including dimethylformamide (DMF). The PTI material consists of layers of carbon nitride intercalated with LiBr. When dissolved, the resulting solutions consist of dissolved, luminescent single to multilayer nanosheets of around 60-125 nm in diameter and Li+ and Br- ions originating from the intercalating salt. To understand this unique solubility, the structure of these solutions has been investigated by high-energy X-ray and neutron diffraction. Although the diffraction patterns are dominated by inter-solvent correlations there are clear differences between the X-ray diffraction data of the PTI solution and the solvent in the 4-6 Å-1 range, with real space differences persisting to at least 10 Å. Structural modelling using both neutron and X-ray datasets as a constraint reveal the formation of distinct, dense solvation shells surrounding the nanoparticles with a layer of Br-close to the PTI-solvent interface. This solvent ordering provides a configuration that is energetically favourable underpinning thermodynamically driven PTI dissolution. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

7.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220339, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691463

RESUMO

Crystalline two-dimensional carbon nitrides with polytriazine imide (PTI) structure are shown to act amphoterically, buffering both HCl and NaOH aqueous solutions, resulting in charged PTI layers that dissolve spontaneously in their aqueous media, particularly for the alkaline solutions. This provides a low energy, green route to their scalable solution processing. Protonation in acid is shown to occur at pyridinic nitrogens, stabilized by adjacent triazines, whereas deprotonation in base occurs primarily at basal plane NH bridges, although NH2 edge deprotonation is competitive. We conclude that mildly acidic or basic pHs are necessary to provide sufficient net charge on the nanosheets to promote dissolution, while avoiding high ion concentrations which screen the repulsion of like-charged PTI sheets in solution. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

8.
Nature ; 589(7840): 22-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408371
9.
J Bacteriol ; 203(10)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33685973

RESUMO

Porphyromonas gingivalis, a bacterial pathogen contributing to human periodontitis, exports and anchors cargo proteins to its surface, enabling the production of black pigmentation using a type IX secretion system (T9SS) and conjugation to anionic lipopolysaccharide (A-LPS). To determine whether T9SS components need to be assembled in situ for correct secretion and A-LPS modification of cargo proteins, combinations of nonpigmented mutants lacking A-LPS or a T9SS component were mixed to investigate in trans complementation. Reacquisition of pigmentation occurred only between an A-LPS mutant and a T9SS mutant, which coincided with A-LPS modification of cargo proteins detected by Western blotting and coimmunoprecipitation/quantitative mass spectrometry. Complementation also occurred using an A-LPS mutant mixed with outer membrane vesicles (OMVs) or purified A-LPS. Fluorescence experiments demonstrated that OMVs can fuse with and transfer lipid to P. gingivalis, leading to the conclusion that complementation of T9SS function occurred through A-LPS transfer between cells. None of the two-strain crosses involving only the five T9SS OM component mutants produced black pigmentation, implying that the OM proteins cannot be transferred in a manner that restores function and surface pigmentation, and hence, a more ordered temporal in situ assembly of T9SS components may be required. Our results show that LPS can be transferred between cells or between cells and OMVs to complement deficiencies in LPS biosynthesis and hemin-related pigmentation to reveal a potentially new mechanism by which the oral microbial community is modulated to produce clinical consequences in the human host.IMPORTANCEPorphyromonas gingivalis is a keystone pathogen contributing to periodontitis in humans, leading to tooth loss. The oral microbiota is essential in this pathogenic process and changes from predominantly Gram-positive (health) to predominantly Gram-negative (disease) species. P. gingivalis uses its type IX secretion system (T9SS) to secrete and conjugate virulence proteins to anionic lipopolysaccharide (A-LPS). This study investigated whether components of this secretion system could be complemented and found that it was possible for A-LPS biosynthetic mutants to be complemented in trans both by strains that had the A-LPS on the cell surface and by exogenous sources of A-LPS. This is the first known example of LPS exchange in a human bacterial pathogen which causes disease through complex microbiota-host interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Lipopolissacarídeos/metabolismo , Porphyromonas gingivalis/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Mutação , Pigmentação/genética , Porphyromonas gingivalis/genética
10.
PLoS Pathog ; 15(5): e1007761, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31071194

RESUMO

Plasmodium falciparum mediates adhesion of infected red blood cells (RBCs) to blood vessel walls by assembling a multi-protein complex at the RBC surface. This virulence-mediating structure, called the knob, acts as a scaffold for the presentation of the major virulence antigen, P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1). In this work we developed correlative STochastic Optical Reconstruction Microscopy-Scanning Electron Microscopy (STORM-SEM) to spatially and temporally map the delivery of the knob-associated histidine-rich protein (KAHRP) and PfEMP1 to the RBC membrane skeleton. We show that KAHRP is delivered as individual modules that assemble in situ, giving a ring-shaped fluorescence profile around a dimpled disk that can be visualized by SEM. Electron tomography of negatively-stained membranes reveals a previously observed spiral scaffold underpinning the assembled knobs. Truncation of the C-terminal region of KAHRP leads to loss of the ring structures, disruption of the raised disks and aberrant formation of the spiral scaffold, pointing to a critical role for KAHRP in assembling the physical knob structure. We show that host cell actin remodeling plays an important role in assembly of the virulence complex, with cytochalasin D blocking knob assembly. Additionally, PfEMP1 appears to be delivered to the RBC membrane, then inserted laterally into knob structures.


Assuntos
Membrana Eritrocítica/parasitologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Peptídeos/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Malária Falciparum/metabolismo , Microscopia Eletrônica de Varredura , Peptídeos/química , Proteínas de Protozoários/química , Virulência
11.
Nano Lett ; 20(5): 3611-3619, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32267704

RESUMO

The search for new nanostructural topologies composed of elemental carbon is driven by technological opportunities as well as the need to understand the structure and evolution of carbon materials formed by planetary shock impact events and in laboratory syntheses. We describe two new families of diamond-graphene (diaphite) phases constructed from layered and bonded sp3 and sp2 nanostructural units and provide a framework for classifying the members of this new class of materials. The nanocomposite structures are identified within both natural impact diamonds and laboratory-shocked samples and possess diffraction features that have previously been assigned to lonsdaleite and postgraphite phases. The diaphite nanocomposites represent a new class of high-performance carbon materials that are predicted to combine the superhard qualities of diamond with high fracture toughness and ductility enabled by the graphitic units and the atomically defined interfaces between the sp3- and sp2-bonded nanodomains.

12.
J Cell Sci ; 131(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29361552

RESUMO

In vertebrates, individual Golgi stacks are joined into a compact ribbon structure; however, the relevance of a ribbon structure has been elusive. Here, we exploit the finding that the membrane tether of the trans-Golgi network, GCC88 (encoded by GCC1), regulates the balance between Golgi mini-stacks and the Golgi ribbon. Loss of Golgi ribbons in stable cells overexpressing GCC88 resulted in compromised mechanistic target of rapamycin (mTOR) signaling and a dramatic increase in LC3-II-positive autophagosomes, whereas RNAi-mediated depletion of GCC88 restored the Golgi ribbon and reduced autophagy. mTOR was absent from dispersed Golgi mini-stacks whereas recruitment of mTOR to lysosomes was unaffected. We show that the Golgi ribbon is a site for localization and activation of mTOR, a process dependent on the ribbon structure. We demonstrate a strict temporal sequence of fragmentation of Golgi ribbon, loss of Golgi mTOR and subsequent increased autophagy. Golgi ribbon fragmentation has been reported in various neurodegenerative diseases and we demonstrate the potential relevance of our findings in neuronal cells using a model of neurodegeneration. Overall, this study highlights a role for the Golgi ribbon in pathways central to cellular homeostasis.This article has an associated First Person interview with the first author of the paper.


Assuntos
Autofagia , Complexo de Golgi/metabolismo , Mamíferos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Complexo de Golgi/ultraestrutura , Proteínas da Matriz do Complexo de Golgi/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neuroblastoma/metabolismo , Transdução de Sinais , Fatores de Tempo , Proteínas tau/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
13.
PLoS Pathog ; 13(10): e1006659, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28985225

RESUMO

Transmission of malaria parasites relies on the formation of a specialized blood form called the gametocyte. Gametocytes of the human pathogen, Plasmodium falciparum, adopt a crescent shape. Their dramatic morphogenesis is driven by the assembly of a network of microtubules and an underpinning inner membrane complex (IMC). Using super-resolution optical and electron microscopies we define the ultrastructure of the IMC at different stages of gametocyte development. We characterize two new proteins of the gametocyte IMC, called PhIL1 and PIP1. Genetic disruption of PhIL1 or PIP1 ablates elongation and prevents formation of transmission-ready mature gametocytes. The maturation defect is accompanied by failure to form an enveloping IMC and a marked swelling of the digestive vacuole, suggesting PhIL1 and PIP1 are required for correct membrane trafficking. Using immunoprecipitation and mass spectrometry we reveal that PhIL1 interacts with known and new components of the gametocyte IMC.


Assuntos
Microtúbulos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Desenvolvimento Sexual/fisiologia , Animais , Microscopia Eletrônica/métodos , Microtúbulos/ultraestrutura , Plasmodium falciparum/ultraestrutura , Transporte Proteico
14.
Philos Trans A Math Phys Eng Sci ; 377(2147): 20180244, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31030648

RESUMO

We describe work carried out within our group to explore new transition metal and main group nitride phases synthesized using high pressure-high temperature techniques using X-ray diffraction and spectroscopy at synchrotron sources in the USA, UK and France to establish their structures and physical properties. Along with previously published data, we also highlight additional results that have not been presented elsewhere and that represent new areas for further exploration. We also describe new work being carried out to explore the properties of carbon nitride materials being developed for energy applications and the nature of few-layered carbon nitride nanomaterials with atomically ordered structures that form solutions in polar liquids via thermodynamically driven exfoliation. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.

15.
Nano Lett ; 17(10): 5891-5896, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28678518

RESUMO

A primary method for the production of 2D nanosheets is liquid-phase delamination from their 3D layered bulk analogues. Most strategies currently achieve this objective by significant mechanical energy input or chemical modification but these processes are detrimental to the structure and properties of the resulting 2D nanomaterials. Bulk poly(triazine imide) (PTI)-based carbon nitrides are layered materials with a high degree of crystalline order. Here, we demonstrate that these semiconductors are spontaneously soluble in select polar aprotic solvents, that is, without any chemical or physical intervention. In contrast to more aggressive exfoliation strategies, this thermodynamically driven dissolution process perfectly maintains the crystallographic form of the starting material, yielding solutions of defect-free, hexagonal 2D nanosheets with a well-defined size distribution. This pristine nanosheet structure results in narrow, excitation-wavelength-independent photoluminescence emission spectra. Furthermore, by controlling the aggregation state of the nanosheets, we demonstrate that the emission wavelengths can be tuned from narrow UV to broad-band white. This has potential applicability to a range of optoelectronic devices.

16.
Angew Chem Int Ed Engl ; 57(39): 12656-12660, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30095209

RESUMO

Two-dimensional (2D) layered graphitic carbon nitride (gCN) nanosheets offer intriguing electronic and chemical properties. However, the exfoliation and functionalisation of gCN for specific applications remain challenging. We report a scalable one-pot reductive method to produce solutions of single- and few-layer 2D gCN nanosheets with excellent stability in a high mass yield (35 %) from polytriazine imide. High-resolution imaging confirmed the intact crystalline structure and identified an AB stacking for gCN layers. The charge allows deliberate organic functionalisation of dissolved gCN, providing a general route to adjust their properties.

17.
Biopolymers ; 107(6)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28224610

RESUMO

Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2 O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H2 O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H2 O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure.


Assuntos
Cartilagem/química , Colágeno/química , Temperatura Alta , Análise Espectral Raman/métodos , Espectrometria de Fluorescência
18.
Exp Parasitol ; 181: 82-87, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803903

RESUMO

Actin has important roles in Plasmodium parasites but its exact function in different life stages is not yet fully elucidated. Here we report the localization of ubiquitous actin I in gametocytes of the rodent model parasite P. berghei. Using an antibody specifically recognizing F-actin and deconvolution microscopy we detected actin I in a punctate pattern in gametocytes. 3D-Structured Illumination Microscopy which allows sub-diffraction limit imaging resolved the signal into structures of less than 130 nm length. A portion of actin I was soluble, but the protein was also found complexed in a stabilized form which could only be completely solubilized by treatment with SDS. An additional population of actin was pelleted at 100 000 × g, consistent with F-actin. Our results suggest that actin in this non-motile form of the parasite is present in short filaments cross-linked to other structures in a cytoskeleton.


Assuntos
Actinas/análise , Plasmodium berghei/química , Actinas/imunologia , Animais , Antimaláricos/farmacologia , Atovaquona/farmacologia , Depsipeptídeos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/imunologia , Plasmodium berghei/enzimologia , Plasmodium berghei/crescimento & desenvolvimento
19.
Mol Microbiol ; 98(6): 1101-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26304012

RESUMO

The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring-EXported Protein-1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob-associated histidine-rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether-like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α-helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.


Assuntos
Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Antígenos CD36/metabolismo , DNA de Protozoário , Membrana Eritrocítica/metabolismo , Eritrócitos/parasitologia , Técnicas de Silenciamento de Genes , Humanos , Mutação , Plasmodium falciparum/genética , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas/química , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Sequências Repetitivas de Ácido Nucleico , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA