Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 29: 100554, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38419803

RESUMO

Background and purpose: Interfraction motion during cervical cancer radiotherapy is substantial in some patients, minimal in others. Non-adaptive plans may miss the target and/or unnecessarily irradiate normal tissue. Adaptive radiotherapy leads to superior dose-volume metrics but is resource-intensive. The aim of this study was to predict target motion, enabling patient selection and efficient resource allocation. Materials and methods: Forty cervical cancer patients had CT with full-bladder (CT-FB) and empty-bladder (CT-EB) at planning, and daily cone-beam CTs (CBCTs). The low-risk clinical target volume (CTVLR) was contoured. Mean coverage of the daily CTVLR by the CT-FB CTVLR was calculated for each patient. Eighty-three investigated variables included measures of organ geometry, patient, tumour and treatment characteristics. Models were trained on 29 patients (171 fractions). The Two-CT multivariate model could use all available data. The Single-CT multivariate model excluded data from the CT-EB. A univariate model was trained using the distance moved by the uterine fundus tip between CTs, the only method of patient selection found in published cervix plan-of-the-day studies. Models were tested on 11 patients (68 fractions). Accuracy in predicting mean coverage was reported as mean absolute error (MAE), mean squared error (MSE) and R2. Results: The Two-CT model was based upon rectal volume, dice similarity coefficient between CT-FB and CT-EB CTVLR, and uterine thickness. The Single-CT model was based upon rectal volume, uterine thickness and tumour size. Both performed better than the univariate model in predicting mean coverage (MAE 7 %, 7 % and 8 %; MSE 82 %2, 65 %2, 110 %2; R2 0.2, 0.4, -0.1). Conclusion: Uterocervix motion is complex and multifactorial. We present two multivariate models which predicted motion with reasonable accuracy using pre-treatment information, and outperformed the only published method.

2.
Adv Radiat Oncol ; 9(9): 101560, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39155886

RESUMO

Purpose: Owing to substantial interfraction motion in cervical cancer, plan-of-the-day (PotD) adaptive radiation therapy may be of benefit to patients. Implementation is limited by uncertainty over how to generate the planning target volumes (PTVs). We compared published methods on our own patients. Methods and Materials: Forty patients each had 3 planning scans with variable bladder filling and daily cone beam computed tomographies (cone beam CTs) during radiation therapy; 5 to 11 cone beam CTs were selected to represent interfraction motion. Clinical target volumes (CTVs) and organs at risk were contoured following EMBRACE-II guidelines. A literature search identified 30 adaptive and nonadaptive solutions to PTV generation, which we applied to our patients. PTV sizes and mean coverage of the daily CTV were determined. For 11 patients, the clinically implemented, subjectively edited plan library was also investigated. Results: Eleven studies assessed 15 PotD strategies against nonadaptive comparators on a median of 14 patients (range, 9-23). Some PotD approaches applied margin recipes to the CTV on each planning scan, some modeled the CTV against bladder volume, and others applied incremental isotropic margins to the CTV with a single planning scan. Generally, coverage improved as PTV size increased. The fixed isotropic margin required to provide 100% coverage of all patients was 44 mm, with a mean PTV size of 3316 cm3. The PotD strategy with the best coverage was a 2-plan library formed by modeling the CTV against bladder volume with extrapolation; it provided 98% mean coverage with 1419-cm3 mean PTV size. A 3-plan library consisting of the CTV on each planning scan with 10-mm margin provided 96% mean coverage with 1346-cm3 mean PTV size. The clinically implemented solution that employed subjective extrapolation had mean 100% coverage and 1282-cm3 PTV size on the 11-patient subset. Coverage provided by the best nonadaptive strategies was not statistically superior to the best PotD strategy (P = .13), but PTVs were larger (P = .02). Conclusions: We identified a modeled 2-plan method and a simple 3-plan method, both of which provided excellent coverage with small PTVs compared with nonadaptive strategies.

3.
Front Oncol ; 14: 1379596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894866

RESUMO

Introduction: We aimed to establish if stereotactic body radiotherapy to the prostate can be delivered safely using reduced clinical target volume (CTV) to planning target volume (PTV) margins on the 1.5T MR-Linac (MRL) (Elekta, Stockholm, Sweden), in the absence of gating. Methods: Cine images taken in 3 orthogonal planes during the delivery of prostate SBRT with 36.25 Gray (Gy) in 5 fractions on the MRL were analysed. Using the data from 20 patients, the percentage of radiotherapy (RT) delivery time where the prostate position moved beyond 1, 2, 3, 4 and 5 mm in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) and any direction was calculated. Results: The prostate moved less than 3 mm in any direction for 90% of the monitoring period in 95% of patients. On a per-fraction basis, 93% of fractions displayed motion in all directions within 3 mm for 90% of the fraction delivery time. Recurring motion patterns were observed showing that the prostate moved with shallow drift (most common), transient excursions and persistent excursions during treatment. Conclusion: A 3 mm CTV-PTV margin is safe to use for the treatment of 5 fraction prostate SBRT on the MRL, without gating. In the context of gating this work suggests that treatment time will not be extensively lengthened when an appropriate gating window is applied.

4.
Radiother Oncol ; 199: 110460, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069085

RESUMO

BACKGROUND AND PURPOSE: Radiotherapy trial quality assurance (RT QA) is crucial for ensuring the safe and reliable delivery of radiotherapy trials, and minimizing inter-institutional variations. While previous studies focused on outlining and planning quality assurance (QA), this work explores the process of Image-Guided Radiotherapy (IGRT), and adaptive radiotherapy. This study presents findings from during-accrual QA in the RAIDER trial, evaluating concordance between online and offline plan selections for bladder cancer participants undergoing adaptive radiotherapy. RAIDER had two seamless stages; stage 1 assessed adherence to dose constraints of dose escalated radiotherapy (DART) and stage 2 assessed safety. The RT QA programme was updated from stage 1 to stage 2. MATERIALS AND METHODS: Data from all participants in the adaptive arms (standard dose adaptive radiotherapy (SART) and DART) of the trial was requested (33 centres across the UK, Australia and New Zealand). Data collection spanned September 2015 to December 2022 and included the plans selected online, on Cone-Beam Computed Tomography (CBCT) data. Concordance with the plans selected offline by the independent RT QA central reviewer was evaluated. RESULTS: Analysable data was received for 72 participants, giving a total of 884 CBCTs. The overall concordance rate was 83% (723/884). From stage 1 to stage 2 the concordance in the plans selected improved from 75% (369/495) to 91% (354/389). CONCLUSION: During-accrual IGRT QA positively influenced plan selection concordance, highlighting the need for ongoing support when introducing a new technique. Overall, it contributes to advancing the understanding and implementation of QA measures in adaptive radiotherapy trials.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38595787

RESUMO

The radiation therapy (RT) landscape is continuously evolving, necessitating adaptation in roles and responsibilities of radiation therapists (RTTs). Advanced Practice Radiation Therapists (APRTs) have taken on a proactive role in expanding services and assuming responsibilities within multi-professional teams. A European Society for Radiotherapy and Oncology (ESTRO) brought geographically diverse and experienced RTTs together, to discuss how advanced practice (AP) in the RTT profession should be future-proofed and create a global platform for collaboration. Challenges in achieving consensus and standardisation of APRT was identified across jurisdictions, emphasising the importance of international collaboration. Whilst highlighting the pivotal role of APRTs in driving innovation, improving patient care, and navigating the complexities of modern RT practice, this position paper presents outcomes and recommendations from the workshop. Discussions highlighted the need for standardised role definitions, education frameworks, regulatory support, and career development pathways to enable the advancement of APRT effectively. Increasing networks and collaboration is recommended to ensure APRTs can shape the future of RT.

6.
Adv Radiat Oncol ; 9(6): 101490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38681895

RESUMO

Purpose: Swallow-related motion of the larynx is most significant in the cranio-caudal directions and of` short duration. Conventional target definition for radical radiation therapy includes coverage of the whole larynx. This study longitudinally examined respiration- and swallow-related laryngeal motions using cine-magnetic resonance imaging. We further analyzed the dosimetry to organs at risk by comparing 3D-conformal radiation therapy (3D-CRT), volumetric modulated arc therapy (VMAT), and intensity modulated radiation therapy (IMRT) techniques. Methods: Fifteen patients with T1-2 N0 glottic squamous cell carcinomas were prospectively recruited for up to 3 cine-MRI scans on the Elekta Unity MR-Linear accelerator, at the beginning, middle, and end of a course of radical radiation therapy. Swallow frequency and motion of the hyoid bone, cricoid and thyroid cartilages, and vocal cords were recorded during swallow and rest. Adapted treatment volumes consisted of gross tumor volume + 0.5-1 cm to a clinical target volume with an additional internal target volume (ITV) for personalized resting-motion. Swallow-related motion was deemed infrequent and was not accounted for in the ITV. We compared radiation therapy plans for 3D-CRT (whole larynx), VMAT (whole larynx), and VMAT and IMRT (ITV for resting motion). Results: Resting- and swallow-related motions were most prominent in the cranio-caudal plane. There were no significant changes in the magnitude of motion over the course of radiation therapy. There was a trend of a progressive reduction in the frequency of swallow. Treatment of partial larynx volumes with intensity modulated methods significantly reduced the dose to carotid arteries, compared with treatment of whole larynx volumes. Robustness analysis demonstrated that when accounting for intrafraction swallow, the total dose delivered to the ITV/planning target volume was maintained at above 95%. Conclusions: Swallow-related motions are infrequent and accounting for resting motion in an ITV is sufficient. VMAT/IMRT techniques that treat more conformal targets can significantly spare critical organs at risk such as the carotid arteries and thyroid gland, potentially reducing the risk of carotid artery stenosis-related complications and other long-term complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA