Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 149(1): 146-58, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464327

RESUMO

Lineage mapping has identified both proliferative and quiescent intestinal stem cells, but the molecular circuitry controlling stem cell quiescence is incompletely understood. By lineage mapping, we show Lrig1, a pan-ErbB inhibitor, marks predominately noncycling, long-lived stem cells that are located at the crypt base and that, upon injury, proliferate and divide to replenish damaged crypts. Transcriptome profiling of Lrig1(+) colonic stem cells differs markedly from the profiling of highly proliferative, Lgr5(+) colonic stem cells; genes upregulated in the Lrig1(+) population include those involved in cell cycle repression and response to oxidative damage. Loss of Apc in Lrig1(+) cells leads to intestinal adenomas, and genetic ablation of Lrig1 results in heightened ErbB1-3 expression and duodenal adenomas. These results shed light on the relationship between proliferative and quiescent intestinal stem cells and support a model in which intestinal stem cell quiescence is maintained by calibrated ErbB signaling with loss of a negative regulator predisposing to neoplasia.


Assuntos
Colo/metabolismo , Genes Supressores de Tumor , Intestino Delgado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Colo/citologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias Intestinais/patologia , Intestino Delgado/citologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
J Pathol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922866

RESUMO

SMAD4 is a tumor suppressor mutated or silenced in multiple cancers, including oral cavity squamous cell carcinoma (OSCC). Human clinical samples and cell lines, mouse models and organoid culture were used to investigate the role that SMAD4 plays in progression from benign disease to invasive OSCC. Human OSCC lost detectable SMAD4 protein within tumor epithelium in 24% of cases, and this loss correlated with worse progression-free survival independent of other major clinical and pathological features. A mouse model engineered for KrasG12D expression in the adult oral epithelium induced benign papillomas, however the combination of KrasG12D with loss of epithelial Smad4 expression resulted in rapid development of invasive carcinoma with features of human OSCC. Examination of regulatory pathways in 3D organoid cultures of SMAD4+ and SMAD4- mouse tumors with Kras mutation found that either loss of SMAD4 or inhibition of TGFß signaling upregulated the WNT pathway and altered the extracellular matrix. The gene signature of the mouse tumor organoids lacking SMAD4 was highly similar to the gene signature of human head and neck squamous cell carcinoma. In summary, this work has uncovered novel mechanisms by which SMAD4 acts as a tumor suppressor in OSCC. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

3.
Gastroenterology ; 163(5): 1334-1350.e14, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863523

RESUMO

BACKGROUND & AIMS: We previously reported that colon epithelial cell silencing of Smad4 increased epithelial expression of inflammatory genes, including the chemokine c-c motif chemokine ligand 20 (CCL20), and increased susceptibility to colitis-associated cancer. Here, we examine the role of the chemokine/receptor pair CCL20/c-c motif chemokine receptor 6 (CCR6) in mediating colitis-associated colon carcinogenesis induced by SMAD4 loss. METHODS: In silico analysis of SMAD4, CCL20, and CCR6 messenger RNA expression was performed on published transcriptomic data from human ulcerative colitis (UC), and colon and rectal cancer samples. Immunohistochemistry for CCL20 and CCR6 was performed on human tissue microarrays comprising human UC-associated cancer specimens, Mice with conditional, epithelial-specific Smad4 loss with and without germline deletion of the Ccr6 gene were subjected to colitis and followed for up to 3 months. Tumors were quantified histologically, and immune cell populations were analyzed by flow cytometry and immunostaining. RESULTS: In human UC-associated cancers, loss of epithelial SMAD4 was associated with increased CCL20 expression and CCR6+ cells. SMAD4 loss in mouse colon epithelium led to enlarged gut-associated lymphoid tissues and recruitment of immune cells to the mouse colon epithelium and stroma, particularly T regulatory, Th17, and dendritic cells. Loss of CCR6 abrogated these immune responses and significantly reduced the incidence of colitis-associated tumors observed with loss of SMAD4 alone. CONCLUSIONS: Regulation of mucosal inflammation is central to SMAD4 tumor suppressor function in the colon. A key downstream node in this regulation is suppression of epithelial CCL20 signaling to CCR6 in immune cells. Loss of SMAD4 in the colon epithelium increases CCL20 expression and chemoattraction of CCR6+ immune cells, contributing to greater susceptibility to colon cancer.


Assuntos
Carcinoma , Neoplasias Associadas a Colite , Colite , Humanos , Camundongos , Animais , Receptores CCR6/genética , Quimiocina CCL20/metabolismo , Ligantes , Inflamação , Colite/complicações , RNA Mensageiro , Proteína Smad4/genética , Proteína Smad4/metabolismo
4.
Gastroenterology ; 162(2): 604-620.e20, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34695382

RESUMO

BACKGROUND & AIMS: Acinar to ductal metaplasia (ADM) occurs in the pancreas in response to tissue injury and is a potential precursor for adenocarcinoma. The goal of these studies was to define the populations arising from ADM, the associated transcriptional changes, and markers of disease progression. METHODS: Acinar cells were lineage-traced with enhanced yellow fluorescent protein (EYFP) to follow their fate post-injury. Transcripts of more than 13,000 EYFP+ cells were determined using single-cell RNA sequencing (scRNA-seq). Developmental trajectories were generated. Data were compared with gastric metaplasia, KrasG12D-induced neoplasia, and human pancreatitis. Results were confirmed by immunostaining and electron microscopy. KrasG12D was expressed in injury-induced ADM using several inducible Cre drivers. Surgical specimens of chronic pancreatitis from 15 patients were evaluated by immunostaining. RESULTS: scRNA-seq of ADM revealed emergence of a mucin/ductal population resembling gastric pyloric metaplasia. Lineage trajectories suggest that some pyloric metaplasia cells can generate tuft and enteroendocrine cells (EECs). Comparison with KrasG12D-induced ADM identifies populations associated with disease progression. Activation of KrasG12D expression in HNF1B+ or POU2F3+ ADM populations leads to neoplastic transformation and formation of MUC5AC+ gastric-pit-like cells. Human pancreatitis samples also harbor pyloric metaplasia with a similar transcriptional phenotype. CONCLUSIONS: Under conditions of chronic injury, acinar cells undergo a pyloric-type metaplasia to mucinous progenitor-like populations, which seed disparate tuft cell and EEC lineages. ADM-derived EEC subtypes are diverse. KrasG12D expression is sufficient to drive neoplasia when targeted to injury-induced ADM populations and offers an alternative origin for tumorigenesis. This program is conserved in human pancreatitis, providing insight into early events in pancreas diseases.


Assuntos
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , Metaplasia/genética , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Células Acinares/citologia , Plasticidade Celular/genética , Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Metaplasia/metabolismo , Mucina-5AC/genética , Pâncreas/citologia , Pâncreas/metabolismo , Ductos Pancreáticos/citologia , Pancreatite/genética , Pancreatite/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Célula Única
5.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G936-G957, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33759564

RESUMO

Defective barrier function is a predisposing factor in inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Although TGFß signaling defects have been associated with IBD and CAC, few studies have examined the relationship between TGFß and intestinal barrier function. Here, we examine the role of TGFß signaling via SMAD4 in modulation of colon barrier function. The Smad4 gene was conditionally deleted in the intestines of adult mice and intestinal permeability assessed using an in vivo 4 kDa FITC-Dextran (FD4) permeability assay. Mouse colon was isolated for gene expression (RNA-sequencing), Western blot, and immunofluorescence analysis. In vitro colon organoid culture was utilized to assess junction-related gene expression by qPCR and transepithelial resistance (TER). In silico analyses of human IBD and colon cancer databases were performed. Mice lacking intestinal expression of Smad4 demonstrate increased colonic permeability to FD4 without gross mucosal damage. mRNA/protein expression analyses demonstrate significant increases in Cldn2/Claudin 2 and Cldn8/Claudin 8, and decreases in Cldn3, Cldn4, and Cldn7/Claudin 7 with intestinal SMAD4 loss in vivo without changes in Claudin protein localization. TGFß1/BMP2 treatment of polarized SMAD4+ colonoids increases TER. Cldn2, Cldn4, Cldn7, and Cldn8 are regulated by canonical TGFß signaling, and TGFß-dependent regulation of these genes is dependent on nascent RNA transcription (Cldn2, Cldn4, Cldn8) but not nascent protein translation (Cldn4, Cldn8). Human IBD/colon cancer specimens demonstrate decreased SMAD4, CLDN4, CLDN7, and CLDN8 and increased CLDN2 compared with healthy controls. Canonical TGFß signaling modulates the expression of tight junction proteins and barrier function in mouse colon.NEW & NOTEWORTHY We demonstrate that canonical TGFß family signaling modulates the expression of critical tight junction proteins in colon epithelial cells, and that expression of these tight junction proteins is associated with maintenance of colon epithelial barrier function in mice.


Assuntos
Colo/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Junções Íntimas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas de Junções Íntimas/genética , Junções Íntimas/metabolismo
6.
Lab Invest ; 94(4): 409-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24535260

RESUMO

Pancreatic cancer occurs in the setting of a profound fibrotic microenvironment that often dwarfs the actual tumor. Although pancreatic fibrosis has been well studied in chronic pancreatitis, its development in pancreatic cancer is much less well understood. This article describes the dynamic remodeling that occurs from pancreatic precursors (pancreatic intraepithelial neoplasias (PanINs)) to pancreatic ductal adenocarcinoma, highlighting similarities and differences between benign and malignant disease. Although collagen matrix is a commonality throughout this process, early stage PanINs are virtually free of periostin while late stage PanIN and pancreatic cancer are surrounded by an increasing abundance of this extracellular matrix protein. Myofibroblasts also become increasingly abundant during progression from PanIN to cancer. From the earliest stages of fibrogenesis, macrophages are associated with this ongoing process. In vitro co-culture indicates there is cross-regulation between macrophages and pancreatic stellate cells (PaSCs), precursors to at least some of the fibrotic cell populations. When quiescent PaSCs were co-cultured with macrophage cell lines, the stellate cells became activated and the macrophages increased cytokine production. In summary, fibrosis in pancreatic cancer involves a complex interplay of cells and matrices that regulate not only the tumor epithelium but the composition of the microenvironment itself.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Macrófagos/fisiologia , Pâncreas/patologia , Neoplasias Pancreáticas/imunologia , Células Estreladas do Pâncreas/fisiologia , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Metaplasia , Camundongos , Neoplasias Pancreáticas/patologia , Receptor Cross-Talk
7.
Lab Invest ; 94(5): 517-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638272

RESUMO

Normal pancreatic epithelium progresses through various stages of pancreatic intraepithelial neoplasms (PanINs) in the development of pancreatic ductal adenocarcinoma (PDAC). Transcriptional regulation of this progression is poorly understood. In mouse, the hepatic nuclear factor 6 (Hnf6) transcription factor is expressed in ductal cells and at lower levels in acinar cells of the adult pancreas, but not in mature endocrine cells. Hnf6 is critical for terminal differentiation of the ductal epithelium during embryonic development and for pancreatic endocrine cell specification. We previously showed that, in mice, loss of Hnf6 from the pancreatic epithelium during organogenesis results in increased duct proliferation and altered duct architecture, increased periductal fibrosis and acinar-to-ductal metaplasia. Here we show that decreased expression of HNF6 is strongly correlated with increased severity of PanIN lesions in samples of human pancreata and is absent from >90% of PDAC. Mouse models in which cancer progression can be analyzed from the earliest stages that are seldom accessible in humans support a role for Hnf6 loss in progression from early- to late-stage PanIN and PDAC. In addition, gene expression analyses of human pancreatic cancer reveal decreased expression of HNF6 and its direct and indirect target genes compared with normal tissue and upregulation of genes that act in opposition to HNF6 and its targets. The negative correlation between HNF6 expression and pancreatic cancer progression suggests that HNF6 maintains pancreatic epithelial homeostasis in humans, and that its loss contributes to the progression from PanIN to ductal adenocarcinoma. Insight on the role of HNF6 in pancreatic cancer development could lead to its use as a biomarker for early detection and prognosis.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Fator 6 Nuclear de Hepatócito/deficiência , Fator 6 Nuclear de Hepatócito/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Progressão da Doença , Fator 6 Nuclear de Hepatócito/metabolismo , Homeostase/genética , Humanos , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
8.
Proc Natl Acad Sci U S A ; 108(37): 15242-7, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876171

RESUMO

Type 1 and type 2 diabetes result from an absolute or relative reduction in functional ß-cell mass. One approach to replacing lost ß-cell mass is transplantation of cadaveric islets; however, this approach is limited by lack of adequate donor tissue. Therefore, there is much interest in identifying factors that enhance ß-cell differentiation and proliferation in vivo or in vitro. Connective tissue growth factor (CTGF) is a secreted molecule expressed in endothelial cells, pancreatic ducts, and embryonic ß cells that we previously showed is required for ß-cell proliferation, differentiation, and islet morphogenesis during development. The current study investigated the tissue interactions by which CTGF promotes normal pancreatic islet development. We found that loss of CTGF from either endothelial cells or ß cells results in decreased embryonic ß-cell proliferation, making CTGF unique as an identified ß cell-derived factor that regulates embryonic ß-cell proliferation. Endothelial CTGF inactivation was associated with decreased islet vascularity, highlighting the proposed role of endothelial cells in ß-cell proliferation. Furthermore, CTGF overexpression in ß cells during embryogenesis using an inducible transgenic system increased islet mass at birth by promoting proliferation of immature ß cells, in the absence of changes in islet vascularity. Together, these findings demonstrate that CTGF acts in an autocrine manner during pancreas development and suggest that CTGF has the potential to enhance expansion of immature ß cells in directed differentiation or regeneration protocols.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Animais , Comunicação Autócrina , Linhagem da Célula , Proliferação de Células , Tamanho Celular , Desenvolvimento Embrionário , Camundongos , Modelos Biológicos , Morfogênese , Ratos
9.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464029

RESUMO

OBJECTIVE: Intraductal Papillary Mucinous Neoplasms (IPMNs) are cystic lesions and bona fide precursors for pancreatic ductal adenocarcinoma (PDAC). Recently, we showed that acinar to ductal metaplasia, an injury repair program, is characterized by a transcriptomic program similar to gastric spasmolytic polypeptide expressing metaplasia (SPEM), suggesting common mechanisms of reprogramming between the stomach and pancreas. The aims of this study were to assay IPMN for pyloric markers and to identify molecular drivers of this program. DESIGN: We analyzed RNA-seq studies of IPMN for pyloric markers, which were validated by immunostaining in patient samples. Cell lines expressing Kras G12D +/- GNAS R201C were manipulated to identify distinct and overlapping transcriptomic programs driven by each oncogene. A PyScenic-based regulon analysis was performed to identify molecular drivers in the pancreas. Expression of candidate drivers was evaluated by RNA-seq and immunostaining. RESULTS: Pyloric markers were identified in human IPMN. GNAS R201C drove expression of these markers in cell lines and siRNA targeting of GNAS R201C or Kras G12D demonstrates that GNAS R201C amplifies a mucinous, pyloric phenotype. Regulon analysis identified a role for transcription factors SPDEF, CREB3L1, and CREB3L4, which are expressed in patient samples. siRNA-targeting of Spdef inhibited mucin production. CONCLUSION: De novo expression of a SPEM phenotype has been identified in pancreatitis and a pyloric phenotype in Kras G12D -driven PanIN and Kras G12D ;GNAS R201C -driven IPMN, suggesting common mechanisms of reprogramming between these lesions and the stomach. A transition from a SPEM to pyloric phenotype may reflect disease progression and/or oncogenic mutation. IPMN-specific GNAS R201C amplifies a mucinous phenotype, in part, through SPDEF.

10.
Gastroenterology ; 142(3): 562-571.e2, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22115830

RESUMO

BACKGROUND & AIMS: Mutational inactivation of adenomatous polyposis coli (APC) is an early event in colorectal cancer (CRC) progression that affects the stability and increases the activity of ß-catenin, a mediator of Wnt signaling. Progression of CRC also involves inactivation of signaling via transforming growth factor ß and bone morphogenetic protein (BMP), which are tumor suppressors. However, the interactions between these pathways are not clear. We investigated the effects of loss of the transcription factor Smad4 on levels of ß-catenin messenger RNA (mRNA) and Wnt signaling. METHODS: We used microarray analysis to associate levels of Smad4 and ß-catenin mRNA in colorectal tumor samples from 250 patients. We performed oligonucleotide-mediated knockdown of Smad4 in human embryonic kidney (HEK293T) and in HCT116 colon cancer cells and transgenically expressed Smad4 in SW480 colon cancer cells. We analyzed adenomas from (APC(Δ1638/+)) and (APC(Δ1638/+)) × (K19Cre(ERT2)Smad4(lox/lox)) mice by using laser capture microdissection. RESULTS: In human CRC samples, reduced levels of Smad4 correlated with increased levels of ß-catenin mRNA. In Smad4-depleted cell lines, levels of ß-catenin mRNA and Wnt signaling increased. Inhibition of BMP or depletion of Smad4 in HEK293T cells increased binding of RNA polymerase II to the ß-catenin gene. Expression of Smad4 in SW480 cells reduced Wnt signaling and levels of ß-catenin mRNA. In mice with heterozygous disruption of Apc(APC(Δ1638/+)), Smad4-deficient intestinal adenomas had increased levels of ß-catenin mRNA and expression of Wnt target genes compared with adenomas from APC(Δ1638/+) mice that expressed Smad4. CONCLUSIONS: Transcription of ß-catenin is inhibited by BMP signaling to Smad4. These findings provide important information about the interaction among transforming growth factor ß, BMP, and Wnt signaling pathways in progression of CRC.


Assuntos
Adenocarcinoma/metabolismo , Polipose Adenomatosa do Colo/metabolismo , Neoplasias Colorretais/metabolismo , Proteína Smad4/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/prevenção & controle , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Polipose Adenomatosa do Colo/prevenção & controle , Idoso , Animais , Sítios de Ligação , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Regulação para Baixo , Feminino , Genes APC , Células HCT116 , Células HEK293 , Humanos , Microdissecção e Captura a Laser , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Proteína Smad4/deficiência , Proteína Smad4/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
11.
Development ; 137(14): 2289-96, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20534672

RESUMO

Studies in both humans and rodents have found that insulin(+) cells appear within or near ducts of the adult pancreas, particularly following damage or disease, suggesting that these insulin(+) cells arise de novo from ductal epithelium. We have found that insulin(+) cells are continuous with duct cells in the epithelium that makes up the hyperplastic ducts of both chronic pancreatitis and pancreatic cancer in humans. Therefore, we tested the hypothesis that both hyperplastic ductal cells and their associated insulin(+) cells arise from the same cell of origin. Using a mouse model that develops insulin(+) cell-containing hyperplastic ducts in response to the growth factor TGFalpha, we performed genetic lineage tracing experiments to determine which cells gave rise to both hyperplastic ductal cells and duct-associated insulin(+) cells. We found that hyperplastic ductal cells arose largely from acinar cells that changed their cell fate, or transdifferentiated, into ductal cells. However, insulin(+) cells adjacent to acinar-derived ductal cells arose from pre-existing insulin(+) cells, suggesting that islet endocrine cells can intercalate into hyperplastic ducts as they develop. We conclude that apparent pancreatic plasticity can result both from the ability of acinar cells to change fate and of endocrine cells to reorganize in association with duct structures.


Assuntos
Ilhotas Pancreáticas/metabolismo , Pâncreas/fisiologia , Adulto , Animais , Diferenciação Celular , Colangiopancreatografia Retrógrada Endoscópica , Células Endócrinas , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Transgênicos , Pâncreas/metabolismo , Pâncreas Exócrino/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Transdução de Sinais
12.
Hepatology ; 55(1): 233-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21898486

RESUMO

UNLABELLED: Notch signaling and hepatocyte nuclear factor-6 (HNF-6) are two genetic factors known to affect lineage commitment in the bipotential hepatoblast progenitor cell (BHPC) population. A genetic interaction involving Notch signaling and HNF-6 in mice has been inferred through separate experiments showing that both affect BHPC specification and bile duct morphogenesis. To define the genetic interaction between HNF-6 and Notch signaling in an in vivo mouse model, we examined the effects of BHPC-specific loss of HNF-6 alone and within the background of BHPC-specific loss of recombination signal binding protein immunoglobulin kappa J (RBP-J), the common DNA-binding partner of all Notch receptors. Isolated loss of HNF-6 in this mouse model fails to demonstrate a phenotypic variance in bile duct development compared to control. However, when HNF-6 loss is combined with RBP-J loss, a phenotype consisting of cholestasis, hepatic necrosis, and fibrosis is observed that is more severe than the phenotype seen with Notch signaling loss alone. This phenotype is associated with significant intrahepatic biliary system abnormalities, including an early decrease in biliary epithelial cells, evolving to ductular proliferation and a decrease in the density of communicating peripheral bile duct branches. In this in vivo model, simultaneous loss of both HNF-6 and RBP-J results in down-regulation of both HNF-1ß and Sox9 (sex determining region Y-related HMG box transcription factor 9). CONCLUSION: HNF-6 and Notch signaling interact in vivo to control expression of downstream mediators essential to the normal development of the intrahepatic biliary system. This study provides a model to investigate genetic interactions of factors important to intrahepatic bile duct development and their effect on cholestatic liver disease phenotypes.


Assuntos
Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Ductos Biliares Intra-Hepáticos/fisiologia , Fator 6 Nuclear de Hepatócito/genética , Hepatócitos/fisiologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/genética , Animais , Ductos Biliares Intra-Hepáticos/citologia , Linhagem da Célula/fisiologia , Colestase/genética , Colestase/metabolismo , Colestase/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 1-beta Nuclear de Hepatócito/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Cadeias kappa de Imunoglobulina/genética , Integrases/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Fatores de Transcrição SOX9/genética
13.
Dev Dyn ; 241(3): 583-94, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22275141

RESUMO

BACKGROUND: The assembly of distinct proteins into tight junctions results in the formation of a continuous barrier that regulates the paracellular flux of water, ions, and small molecules across epithelia. The claudin protein family encompasses numerous major structural components of tight junctions. These proteins specify the permeability characteristics of tight junctions and consequently, some of the physiological properties of epithelia. Furthermore, defective claudin expression has been found to correlate with some diseases, tumor progression, and defective morphogenesis. Investigating the pattern of claudin expression during embryogenesis or in certain pathological conditions is necessary to begin disclosing the role of these proteins in health and disease. RESULTS: This study analyzed the expression of several claudins during mouse pancreas organogenesis and in pancreatic intraepithelial neoplasias of mouse and human origin. CONCLUSIONS: Our results underscored a distinctive, dynamic distribution of certain claudins in both the developing pancreas and the pancreatic epithelium undergoing neoplastic transformation.


Assuntos
Transformação Celular Neoplásica , Claudinas/metabolismo , Morfogênese , Pâncreas/embriologia , Pâncreas/patologia , Neoplasias Pancreáticas/metabolismo , Animais , Claudinas/genética , Epitélio/embriologia , Epitélio/metabolismo , Epitélio/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Organogênese , Pâncreas/metabolismo , Ductos Pancreáticos/embriologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Células Tumorais Cultivadas
14.
Sci Rep ; 13(1): 20088, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974020

RESUMO

Hepatocyte Nuclear Factor 4-alpha (HNF4α) comprises a nuclear receptor superfamily of ligand-dependent transcription factors that yields twelve isoforms in humans, classified into promoters P1 or P2-associated groups with specific functions. Alterations in HNF4α isoforms have been associated with tumorigenesis. However, the distribution of its isoforms during progression from dysplasia to malignancy has not been studied, nor has it yet been studied in intraductal papillary mucinous neoplasms, where both malignant and pre-malignant forms are routinely clinically identified. We examined the expression patterns of pan-promoter, P1-specific, and P2-specific isoform groups in normal pancreatic components and IPMNs. Pan-promoter, P1 and P2 nuclear expression were weakly positive in normal pancreatic components. Nuclear expression for all isoform groups was increased in low-grade IPMN, high-grade IPMN, and well-differentiated invasive adenocarcinoma. Poorly differentiated invasive components in IPMNs showed loss of all forms of HNF4α. Pan-promoter, and P1-specific HNF4α expression showed shifts in subnuclear and sub-anatomical distribution in IPMN, whereas P2 expression was consistently nuclear. Tumor cells with high-grade dysplasia at the basal interface with the stroma showed reduced expression of P1, while P2 was equally expressed in both components. Additional functional studies are warranted to further explore the mechanisms underlying the spatial and differential distribution of HNF4α isoforms in IPMNs.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/patologia , Pâncreas/metabolismo , Adenocarcinoma/patologia , Hiperplasia/patologia , Isoformas de Proteínas/metabolismo , Carcinoma Ductal Pancreático/patologia
15.
Gastroenterology ; 151(3): 393-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27456389
16.
Cell Mol Gastroenterol Hepatol ; 11(5): 1327-1345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482393

RESUMO

BACKGROUND & AIMS: Colonization by gut microbiota in early life confers beneficial effects on immunity throughout the host's lifespan. We sought to elucidate the mechanisms whereby neonatal supplementation with p40, a probiotic functional factor, reprograms intestinal epithelial cells for protection against adult-onset intestinal inflammation. METHODS: p40 was used to treat young adult mouse colonic (YAMC) epithelial cells with and without deletion of a methyltransferase, su(var)3-9, enhancer-of-zeste and trithorax domain-containing 1ß (Setd1ß), and mice in early life or in adulthood. Anti-transforming growth factor ß (TGFß)-neutralizing antibodies were administered to adult mice with and without colitis induced by 2,4,6-trinitrobenzenesulfonic acid or dextran sulfate sodium. We examined Setd1b and Tgfb gene expression, TGFß production, monomethylation and trimethylation of histone H3 on the lysine 4 residue (H3K4me1/3), H3K4me3 enrichment in Tgfb promoter, differentiation of regulatory T cells (Tregs), and the inflammatory status. RESULTS: p40 up-regulated expression of Setd1b in YAMC cells. Accordingly, p40 enhanced H3K4me1/3 in YAMC cells in a Setd1ß-dependent manner. p40-regulated Setd1ß mediated programming the TGFß locus into a transcriptionally permissive chromatin state and promoting TGFß production in YAMC. Furthermore, transient exposure to p40 during the neonatal period and in adulthood resulted in the immediate increase in Tgfb gene expression. However, only neonatal p40 supplementation induced the sustained H3K4me1/3 and Tgfb gene expression that persisted into adulthood. Interfering with TGFß function by neutralizing antibodies diminished the long-lasting effects of neonatal p40 supplementation on differentiation of Tregs and protection against colitis in adult mice. CONCLUSIONS: Exposure to p40 in early life enables an epigenetic imprint on TGFß, leading to long-lasting production of TGFß by intestinal epithelial cells to expand Tregs and protect the gut against inflammation.


Assuntos
Colite/prevenção & controle , Epigênese Genética , Inflamação/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Probióticos/farmacologia , Fator de Crescimento Transformador beta/genética , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fator de Crescimento Transformador beta/metabolismo
17.
Gastroenterology ; 137(5): 1785-94, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19689925

RESUMO

BACKGROUND & AIMS: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is produced as a type-I, single-pass transmembrane protein that can be cleaved to release a diffusible peptide. HB-EGF, often overexpressed in damaged or diseased epithelium, is normally expressed in pancreatic islets, but its function is not understood. METHODS: To understand the function of each isoform of HB-EGF, we made transgenes expressing either a constitutively transmembrane or a constitutively secreted protein. RESULTS: The transmembrane isoform was not an inert precursor protein, but a functional molecule, downregulating the glucose-sensing apparatus of pancreatic islets. Conversely, the secreted form of HB-EGF improved islet function, but had severe fibrotic and neoplastic effects on surrounding tissues. Each isoform had a more severe phenotype than that of full-length HB-EGF, even though the full-length protein was efficiently cleaved, thus producing both isoforms, suggesting that a level of regulation was lost by separating the isoforms. CONCLUSIONS: This work demonstrates that islet function depends on the ratio of cleaved to uncleaved HB-EGF and that the transmembrane intermediate, while deleterious to islet function, is necessary to restrict action of soluble HB-EGF away from surrounding tissue.


Assuntos
Intolerância à Glucose/etiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Ilhotas Pancreáticas/metabolismo , Proteínas de Membrana/fisiologia , Pancreatopatias/etiologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiopatologia , Camundongos , Camundongos Transgênicos , Pancreatopatias/metabolismo , Pancreatopatias/patologia , Isoformas de Proteínas/fisiologia , Precursores de Proteínas/fisiologia
18.
J Mol Endocrinol ; 64(4): 235-248, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32213654

RESUMO

The G6PC1, G6PC2 and G6PC3 genes encode distinct glucose-6-phosphatase catalytic subunit (G6PC) isoforms. In mice, germline deletion of G6pc2 lowers fasting blood glucose (FBG) without affecting fasting plasma insulin (FPI) while, in isolated islets, glucose-6-phosphatase activity and glucose cycling are abolished and glucose-stimulated insulin secretion (GSIS) is enhanced at submaximal but not high glucose. These observations are all consistent with a model in which G6PC2 regulates the sensitivity of GSIS to glucose by opposing the action of glucokinase. G6PC2 is highly expressed in human and mouse islet beta cells however, various studies have shown trace G6PC2 expression in multiple tissues raising the possibility that G6PC2 also affects FBG through non-islet cell actions. Using real-time PCR we show here that expression of G6pc1 and/or G6pc3 are much greater than G6pc2 in peripheral tissues, whereas G6pc2 expression is much higher than G6pc3 in both pancreas and islets with G6pc1 expression not detected. In adult mice, beta cell-specific deletion of G6pc2 was sufficient to reduce FBG without changing FPI. In addition, electronic health record-derived phenotype analyses showed no association between G6PC2 expression and phenotypes clearly unrelated to islet function in humans. Finally, we show that germline G6pc2 deletion enhances glycolysis in mouse islets and that glucose cycling can also be detected in human islets. These observations are all consistent with a mechanism by which G6PC2 action in islets is sufficient to regulate the sensitivity of GSIS to glucose and hence influence FBG without affecting FPI.


Assuntos
Glicemia/metabolismo , Glucose-6-Fosfatase/genética , Células Secretoras de Insulina/metabolismo , Animais , Glicemia/genética , Células Cultivadas , Regulação para Baixo/genética , Jejum/sangue , Deleção de Genes , Mutação em Linhagem Germinativa , Glucose-6-Fosfatase/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética
19.
Am J Physiol Gastrointest Liver Physiol ; 297(3): G434-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19608732

RESUMO

The development of pancreatic fibrosis has been shown to be a major component in several diseases of the pancreas including pancreatic cancer, chronic pancreatitis, and type 2 diabetes mellitus, but its actual role in the progression of these disorders is still unknown. This fibrosis is characterized by stromal expansion and the excessive deposition of extracellular matrix (ECM) that replaces pancreatic tissue. This eventually leads to dysregulation of ECM turnover, production of cytokines, restriction of blood flow, and often exocrine and endocrine insufficiencies. Activated pancreatic stellate cells (PSCs) have been identified as key mediators in the progression of pancreatic fibrosis, serving as the predominant source of excess ECM proteins. Previously, we found that overexpression of the growth factor heparin-binding epidermal growth factor-like growth factor (HB-EGF) in pancreatic islets led to intraislet fibrosis. HB-EGF binds to and activates two receptors, epidermal growth factor receptor (EGFR) and ErbB4, as well as heparin moieties and CD9/DRAP27. To understand the mechanism underlying the induction of fibrogenesis by HB-EGF, we utilized a hypomorphic allele of Egfr, the Waved-2 allele, to demonstrate that EGFR signaling regulates fibrogenesis in vivo. Using an in vitro cell migration assay, we show that HB-EGF regulates both chemoattraction and stimulation of proliferation of PSCs via EGFR activation.


Assuntos
Receptores ErbB/metabolismo , Pâncreas/metabolismo , Pancreatopatias/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Proliferação de Células , Quimiotaxia , Modelos Animais de Doenças , Receptores ErbB/genética , Fibrose , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Pâncreas/patologia , Pancreatopatias/genética , Pancreatopatias/patologia , Pancreatopatias/prevenção & controle , Proteínas Recombinantes/metabolismo , Transativadores/genética , Transativadores/metabolismo
20.
Gastrointest Disord (Basel) ; 1(2): 290-300, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33834163

RESUMO

TGF-ß superfamily signaling is responsible for many critical cellular functions including control of cell growth, cell proliferation, cell differentiation, and apoptosis. TGF-ß appears to be critical in gastrulation, embryonic development, and morphogenesis, and it retains pleiotropic roles in many adult tissues and cell types in a highly context-dependent manner. While TGF-ß signaling within leukocytes is known to have an immunosuppressive role, its immunomodulatory effects within epithelial cells and epithelial cancers is less well understood. Recent data has emerged that suggests TGF-ß pathway signaling within epithelial cells may directly modulate pro-inflammatory chemokine/cytokine production and resultant leukocyte recruitment. This immunomodulation by epithelial TGF-ß pathway signaling may directly impact tumorigenesis and tumor progression through modulation of the epithelial microenvironment, although causal pathways responsible for such an observation remain incompletely investigated. This review presents the published literature as it relates to the immunomodulatory effects of TGF-ß family signaling within intestinal epithelial cells and carcinomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA