Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
PLoS Pathog ; 16(5): e1008576, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392230

RESUMO

Yersinia suppress neutrophil responses by using a type 3 secretion system (T3SS) to inject 6-7 Yersinia effector proteins (Yops) effectors into their cytoplasm. YopH is a tyrosine phosphatase that causes dephosphorylation of the adaptor protein SKAP2, among other targets in neutrophils. SKAP2 functions in reactive oxygen species (ROS) production, phagocytosis, and integrin-mediated migration by neutrophils. Here we identify essential neutrophil functions targeted by YopH, and investigate how the interaction between YopH and SKAP2 influence Yersinia pseudotuberculosis (Yptb) survival in tissues. The growth defect of a ΔyopH mutant was restored in mice defective in the NADPH oxidase complex, demonstrating that YopH is critical for protecting Yptb from ROS during infection. The growth of a ΔyopH mutant was partially restored in Skap2-deficient (Skap2KO) mice compared to wild-type (WT) mice, while induction of neutropenia further enhanced the growth of the ΔyopH mutant in both WT and Skap2KO mice. YopH inhibited both ROS production and degranulation triggered via integrin receptor, G-protein coupled receptor (GPCR), and Fcγ receptor (FcγR) stimulation. SKAP2 was required for integrin receptor and GPCR-mediated ROS production, but dispensable for degranulation under all conditions tested. YopH blocked SKAP2-independent FcγR-stimulated phosphorylation of the proximal signaling proteins Syk, SLP-76, and PLCγ2, and the more distal signaling protein ERK1/2, while only ERK1/2 phosphorylation was dependent on SKAP2 following integrin receptor activation. These findings reveal that YopH prevents activation of both SKAP2-dependent and -independent neutrophilic defenses, uncouple integrin- and GPCR-dependent ROS production from FcγR responses based on their SKAP2 dependency, and show that SKAP2 is not required for degranulation.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Neutrófilos/imunologia , Proteínas Tirosina Fosfatases/imunologia , Transdução de Sinais/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/imunologia , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/patologia , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/genética , Yersinia pseudotuberculosis/patogenicidade , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/patologia
2.
Immunity ; 37(1): 96-107, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22840842

RESUMO

Yersinia pestis, the causative agent of plague, is able to suppress production of inflammatory cytokines IL-18 and IL-1ß, which are generated through caspase-1-activating nucleotide-binding domain and leucine-rich repeat (NLR)-containing inflammasomes. Here, we sought to elucidate the role of NLRs and IL-18 during plague. Lack of IL-18 signaling led to increased susceptibility to Y. pestis, producing tetra-acylated lipid A, and an attenuated strain producing a Y. pseudotuberculosis-like hexa-acylated lipid A. We found that the NLRP12 inflammasome was an important regulator controlling IL-18 and IL-1ß production after Y. pestis infection, and NLRP12-deficient mice were more susceptible to bacterial challenge. NLRP12 also directed interferon-γ production via induction of IL-18, but had minimal effect on signaling to the transcription factor NF-κB. These studies reveal a role for NLRP12 in host resistance against pathogens. Minimizing NLRP12 inflammasome activation may have been a central factor in evolution of the high virulence of Y. pestis.


Assuntos
Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peste/imunologia , Peste/metabolismo , Yersinia pestis/imunologia , Animais , Inflamassomos/imunologia , Interferon gama/biossíntese , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peste/mortalidade , Transdução de Sinais
3.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32601072

RESUMO

The Pseudomonas aeruginosa type III secretion system (T3SS) needle comprised of multiple PscF subunits is essential for the translocation of effector toxins into human cells, facilitating the establishment and dissemination of infection. Mutations in the pscF gene provide resistance to the phenoxyacetamide (PhA) series of T3SS inhibitory chemical probes. To better understand PscF functions and interactions with PhA, alleles of pscF with 71 single mutations altering 49 of the 85 residues of the encoded protein were evaluated for their effects on T3SS phenotypes. Of these, 37% eliminated and 63% maintained secretion, with representatives of both evenly distributed across the entire protein. Mutations in 14 codons conferred a degree of PhA resistance without eliminating secretion, and all but one were in the alpha-helical C-terminal 25% of PscF. PhA-resistant mutants exhibited no cross-resistance to two T3SS inhibitors with different chemical scaffolds. Two mutations caused constitutive T3SS secretion. The pscF allele at its native locus, whether wild type (WT), constitutive, or PhA resistant, was dominant over other pscF alleles expressed from nonnative loci and promoters, but mixed phenotypes were observed in chromosomal ΔpscF strains with both WT and mutant alleles at nonnative loci. Some PhA-resistant mutants exhibited reduced translocation efficiency that was improved in a PhA dose-dependent manner, suggesting that PhA can bind to those resistant needles. In summary, these results are consistent with a direct interaction between PhA inhibitors and the T3SS needle, suggest a mechanism of blocking conformational changes, and demonstrate that PscF affects T3SS regulation, as well as carrying out secretion and translocation.IMPORTANCEP. aeruginosa effector toxin translocation into host innate immune cells is critical for the establishment and dissemination of P. aeruginosa infections. The medical need for new anti-P. aeruginosa agents is evident by the fact that P. aeruginosa ventilator-associated pneumonia is associated with a high mortality rate (40 to 69%) and recurs in >30% of patients, even with standard-of-care antibiotic therapy. The results described here confirm roles for the PscF needle in T3SS secretion and translocation and suggest that it affects regulation, possibly by interaction with T3SS regulatory proteins. The results also support a model of direct interaction of the needle with PhA and suggest that, with further development, members of the PhA series may prove useful as drugs for P. aeruginosa infection.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Sistemas de Secreção Tipo III/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Fenoxiacetatos/farmacologia , Pseudomonas aeruginosa/genética , Relação Estrutura-Atividade
4.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31988174

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterial pathogen that causes a range of infections, including pneumonias, urinary tract infections, and septicemia, in otherwise healthy and immunocompromised patients. K. pneumoniae has become an increasing concern due to the rise and spread of antibiotic-resistant and hypervirulent strains. However, its virulence determinants remain understudied. To identify novel K. pneumoniae virulence factors needed to cause pneumonia, a high-throughput screen was performed with an arrayed library of over 13,000 K. pneumoniae transposon insertion mutants in the lungs of wild-type (WT) and neutropenic mice using transposon sequencing (Tn-seq). Insertions in 166 genes resulted in K. pneumoniae mutants that were significantly less fit in the lungs of WT mice than in those of neutropenic mice. Of these, mutants with insertions in 51 genes still had significant defects in neutropenic mice, while mutants with insertions in 52 genes recovered significantly. In vitro screens using a minilibrary of K. pneumoniae transposon mutants identified putative functions for a subset of these genes, including in capsule content and resistance to reactive oxygen and nitrogen species. Lung infections in mice confirmed roles in K. pneumoniae virulence for the ΔdedA, ΔdsbC, ΔgntR, Δwzm-wzt, ΔyaaA, and ΔycgE mutants, all of which were defective in either capsule content or growth in reactive oxygen or nitrogen species. The fitness of the ΔdedA, ΔdsbC, ΔgntR, ΔyaaA, and ΔycgE mutants was higher in neutropenic mouse lungs, indicating that these genes encode proteins that protect K. pneumoniae against neutrophil-related effector functions.


Assuntos
Interações Hospedeiro-Patógeno , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Pneumonia Bacteriana/imunologia , Fatores de Virulência/metabolismo , Animais , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Testes Genéticos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Camundongos , Mutagênese Insercional , Pneumonia Bacteriana/microbiologia , Virulência , Fatores de Virulência/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-31109974

RESUMO

The emergence of multidrug-resistant Klebsiella pneumoniae has rendered a large array of infections difficult to treat. In a high-throughput genetic screen of factors required for K. pneumoniae survival in the lung, amino acid biosynthesis genes were critical for infection in both immunosuppressed and wild-type (WT) mice. The limited pool of amino acids in the lung did not change during infection and was insufficient for K. pneumoniae to overcome attenuating mutations in aroA, hisA, leuA, leuB, serA, serB, trpE, and tyrA in WT and immunosuppressed mice. Deletion of aroA, which encodes 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase class I, resulted in the most severe attenuation. Treatment with the EPSP synthase-specific competitive inhibitor glyphosate decreased K. pneumoniae growth in the lungs. K. pneumoniae expressing two previously identified glyphosate-resistant mutations in EPSP synthase had significant colonization defects in lung infection. Selection and characterization of six spontaneously glyphosate-resistant mutants in K. pneumoniae yielded no mutations in aroA Strikingly, glyphosate treatment of mice lowered the bacterial burden of two of three spontaneous glyphosate-resistant mutants and further lowered the burden of the less-attenuated EPSP synthase catalytic mutant. Of 39 clinical isolate strains, 9 were resistant to glyphosate at levels comparable to those of selected resistant strains, and none appeared to be more highly resistant. These findings demonstrate amino acid biosynthetic pathways essential for K. pneumoniae infection are promising novel therapeutic targets.


Assuntos
Aminoácidos/metabolismo , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/patogenicidade , Pulmão/microbiologia , Animais , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Farmacorresistência Bacteriana Múltipla , Feminino , Glicina/análogos & derivados , Glicina/uso terapêutico , Hospedeiro Imunocomprometido , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Glifosato
6.
J Immunol ; 198(11): 4435-4447, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461567

RESUMO

The innate immune response is a central element of the initial defense against bacterial and viral pathogens. Macrophages are key innate immune cells that upon encountering pathogen-associated molecular patterns respond by producing cytokines, including IFN-ß. In this study, we identify a novel role for RIPK1 and RIPK3, a pair of homologous serine/threonine kinases previously implicated in the regulation of necroptosis and pathologic tissue injury, in directing IFN-ß production in macrophages. Using genetic and pharmacologic tools, we show that catalytic activity of RIPK1 directs IFN-ß synthesis induced by LPS in mice. Additionally, we report that RIPK1 kinase-dependent IFN-ß production may be elicited in an analogous fashion using LPS in bone marrow-derived macrophages upon inhibition of caspases. Notably, this regulation requires kinase activities of both RIPK1 and RIPK3, but not the necroptosis effector protein, MLKL. Mechanistically, we provide evidence that necrosome-like RIPK1 and RIPK3 aggregates facilitate canonical TRIF-dependent IFN-ß production downstream of the LPS receptor TLR4. Intriguingly, we also show that RIPK1 and RIPK3 kinase-dependent synthesis of IFN-ß is markedly induced by avirulent strains of Gram-negative bacteria, Yersinia and Klebsiella, and less so by their wild-type counterparts. Overall, these observations identify unexpected roles for RIPK1 and RIPK3 kinases in the production of IFN-ß during the host inflammatory responses to bacterial infection and suggest that the axis in which these kinases operate may represent a target for bacterial virulence factors.


Assuntos
Interferon beta/biossíntese , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose/imunologia , Bactérias Gram-Negativas/imunologia , Interferon beta/imunologia , Klebsiella/imunologia , Macrófagos/microbiologia , Camundongos , Necrose/imunologia , Fosforilação , Receptor 4 Toll-Like/imunologia , Yersinia/imunologia
7.
PLoS Pathog ; 12(9): e1005898, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27689357

RESUMO

All three pathogenic Yersinia species share a conserved virulence plasmid that encodes a Type 3 Secretion System (T3SS) and its associated effector proteins. During mammalian infection, these effectors are injected into innate immune cells, where they block many bactericidal functions, including the production of reactive oxygen species (ROS). However, Y. pseudotuberculosis (Yptb) lacking the T3SS retains the ability to colonize host organs, demonstrating that chromosome-encoded factors are sufficient for growth within mammalian tissue sites. Previously we uncovered more than 30 chromosomal factors that contribute to growth of T3SS-deficient Yptb in livers. Here, a deep sequencing-based approach was used to validate and characterize the phenotype of 18 of these genes during infection by both WT and plasmid-deficient Yptb. Additionally, the fitness of these mutants was evaluated in immunocompromised mice to determine whether any genes contributed to defense against phagocytic cell restriction. Mutants containing deletions of the dusB-fis operon, which encodes the nucleoid associated protein Fis, were markedly attenuated in immunocompetent mice, but were restored for growth in mice lacking neutrophils and inflammatory monocytes, two of the major cell types responsible for restricting Yersinia infection. We determined that Fis was dispensable for secretion of T3SS effectors, but was essential for resisting ROS and regulated the transcription of several ROS-responsive genes. Strikingly, this protection was critical for virulence, as growth of ΔdusB-fis was restored in mice unable to produce ROS. These data support a model in which ROS generated by neutrophils and inflammatory monocytes that have not been translocated with T3SS effectors enter bacterial cells during infection, where their bactericidal effects are resisted in a Fis-dependent manner. This is the first report of the requirement for Fis during Yersinia infection and also highlights a novel mechanism by which Yptb defends against ROS in mammalian tissues.

8.
PLoS Pathog ; 12(12): e1006035, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27911947

RESUMO

Type III secretion systems (T3SS) are central virulence factors for many pathogenic Gram-negative bacteria, and secreted T3SS effectors can block key aspects of host cell signaling. To counter this, innate immune responses can also sense some T3SS components to initiate anti-bacterial mechanisms. The Yersinia pestis T3SS is particularly effective and sophisticated in manipulating the production of pro-inflammatory cytokines IL-1ß and IL-18, which are typically processed into their mature forms by active caspase-1 following inflammasome formation. Some effectors, like Y. pestis YopM, may block inflammasome activation. Here we show that YopM prevents Y. pestis induced activation of the Pyrin inflammasome induced by the RhoA-inhibiting effector YopE, which is a GTPase activating protein. YopM blocks YopE-induced Pyrin-mediated caspase-1 dependent IL-1ß/IL-18 production and cell death. We also detected YopM in a complex with Pyrin and kinases RSK1 and PKN1, putative negative regulators of Pyrin. In contrast to wild-type mice, Pyrin deficient mice were also highly susceptible to an attenuated Y. pestis strain lacking YopM, emphasizing the importance of inhibition of Pyrin in vivo. A complex interplay between the Y. pestis T3SS and IL-1ß/IL-18 production is evident, involving at least four inflammasome pathways. The secreted effector YopJ triggers caspase-8- dependent IL-1ß activation, even when YopM is present. Additionally, the presence of the T3SS needle/translocon activates NLRP3 and NLRC4-dependent IL-1ß generation, which is blocked by YopK, but not by YopM. Taken together, the data suggest YopM specificity for obstructing the Pyrin pathway, as the effector does not appear to block Y. pestis-induced NLRP3, NLRC4 or caspase-8 dependent caspase-1 processing. Thus, we identify Y. pestis YopM as a microbial inhibitor of the Pyrin inflammasome. The fact that so many of the Y. pestis T3SS components are participating in regulation of IL-1ß/IL-18 release suggests that these effects are essential for maximal control of innate immunity during plague.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Inflamassomos/imunologia , Peste/imunologia , Pirina/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Yersinia pestis/imunologia
9.
Anaerobe ; 50: 85-92, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29462695

RESUMO

Endospore-forming Clostridioides difficile is a causative agent of antibiotic-induced diarrhea, a major nosocomial infection. Studies of its interactions with mammalian tissues have been hampered by the fact that C. difficile requires anaerobic conditions to survive after spore germination. We recently developed a bioengineered 3D human intestinal tissue model and found that low O2 conditions are produced in the lumen of these tissues. Here, we compared the ability of C. difficile spores to germinate, produce toxin and cause tissue damage in our bioengineered 3D tissue model versus in a 2D transwell model in which human cells form a polarized monolayer. 3D tissue models or 2D polarized monolayers on transwell filters were challenged with the non-toxin producing C. difficile CCUG 37787 serotype X (ATCC 43603) and the toxin producing UK1 C. difficile spores in the presence of the germinant, taurocholate. Spores germinated in both the 3D tissue model as well as the 2D transwell system, however toxin activity was significantly higher in the 3D tissue models compared to the 2D transwells. Moreover, the epithelium damage in the 3D tissue model was significantly more severe than in 2D transwells and damage correlated significantly with the level of toxin activity detected but not with the amount of germinated spores. Combined, these results show that the bioengineered 3D tissue model provides a powerful system with which to study early events leading to toxin production and tissue damage of C. difficile with mammalian cells under anaerobic conditions. Furthermore, these systems may be useful for examining the effects of microbiota, novel drugs and other potential therapeutics directed towards C. difficile infections.


Assuntos
Toxinas Bacterianas/biossíntese , Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Técnicas de Cultura de Tecidos , Alicerces Teciduais , Animais , Linhagem Celular , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/ultraestrutura , Ratos , Esporos Bacterianos
10.
J Infect Dis ; 214(7): 1105-16, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27412581

RESUMO

With the rise of multidrug resistance, Pseudomonas aeruginosa infections require alternative therapeutics. The injectisome (iT3SS) and flagellar (fT3SS) type III secretion systems are 2 virulence factors associated with poor clinical outcomes. iT3SS translocates toxins, rod, needle, or regulator proteins, and flagellin into the host cell cytoplasm and causes cytotoxicity and NLRC4-dependent inflammasome activation, which induces interleukin 1ß (IL-1ß) release and reduces interleukin 17 (IL-17) production and bacterial clearance. fT3SS ensures bacterial motility, attachment to the host cells, and triggers inflammation. INP1855 is an iT3SS inhibitor identified by in vitro screening, using Yersinia pseudotuberculosis Using a mouse model of P. aeruginosa pulmonary infection, we show that INP1855 improves survival after infection with an iT3SS-positive strain, reduces bacterial pathogenicity and dissemination and IL-1ß secretion, and increases IL-17 secretion. INP1855 also modified the cytokine balance in mice infected with an iT3SS-negative, fT3SS-positive strain. In vitro, INP1855 impaired iT3SS and fT3SS functionality, as evidenced by a reduction in secretory activity and flagellar motility and an increase in adenosine triphosphate levels. As a result, INP1855 decreased cytotoxicity mediated by toxins and by inflammasome activation induced by both laboratory strains and clinical isolates. We conclude that INP1855 acts by dual inhibition of iT3SS and fT3SS and represents a promising therapeutic approach.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Inflamassomos/metabolismo , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Análise de Sobrevida , Resultado do Tratamento
11.
Clin Infect Dis ; 63(1): 89-95, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27025826

RESUMO

The utility of conventional antibiotics for the treatment of bacterial infections has become increasingly strained due to increased rates of resistance coupled with reduced rates of development of new agents. As a result, multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacterial strains are now frequently encountered. This has led to fears of a "postantibiotic era" in which many bacterial infections will be untreatable. Alternative nonantibiotic treatment strategies need to be explored to ensure that a robust pipeline of effective therapies is available to clinicians. In this review, we highlight some of the recent developments in this area, such as the targeting of bacterial virulence factors, utilization of bacteriophages to kill bacteria, and manipulation of the microbiome to combat infections.


Assuntos
Infecções Bacterianas , Microbiota , Terapia por Fagos/métodos , Fatores de Virulência/uso terapêutico , Animais , Antibacterianos , Infecções Bacterianas/microbiologia , Infecções Bacterianas/terapia , Sistemas de Secreção Bacterianos , Bacteriófagos , Pesquisa Biomédica , Humanos , Camundongos
13.
Infect Immun ; 83(1): 247-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348635

RESUMO

Animals develop in the presence of complex microbial communities, and early host responses to these microbes can influence key aspects of development, such as maturation of the immune system, in ways that impact adult physiology. We previously showed that the zebrafish intestinal alkaline phosphatase (ALPI) gene alpi.1 was induced by Gram-negative bacterium-derived lipopolysaccharide (LPS), a process dependent on myeloid differentiation primary response gene 88 (MYD88), and functioned to detoxify LPS and prevent excessive host inflammatory responses to commensal microbiota in the newly colonized intestine. In the present study, we examined whether the regulation and function of ALPI were conserved in mammals. We found that among the mouse ALPI genes, Akp3 was specifically upregulated by the microbiota, but through a mechanism independent of LPS or MYD88. We showed that disruption of Akp3 did not significantly affect intestinal inflammatory responses to commensal microbiota or animal susceptibility to Yersinia pseudotuberculosis infection. However, we found that Akp3(-/-) mice acquired LPS tolerance during postweaning development, suggesting that Akp3 plays an important role in immune education. Finally, we demonstrated that inhibiting LPS sensing with a mutation in CD14 abrogated the accelerated weight gain in Akp3(-/-) mice receiving a high-fat diet, suggesting that the weight gain is caused by excessive LPS in Akp3(-/-) mice.


Assuntos
Fosfatase Alcalina/deficiência , Bactérias Gram-Negativas/imunologia , Tolerância Imunológica , Intestinos/enzimologia , Intestinos/microbiologia , Lipopolissacarídeos/imunologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Aumento de Peso
14.
PLoS Pathog ; 9(6): e1003415, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818844

RESUMO

Yersinia delivers Yops into numerous types of cultured cells, but predominantly into professional phagocytes and B cells during animal infection. The basis for this cellular tropism during animal infection is not understood. This work demonstrates that efficient and specific Yop translocation into phagocytes by Yersinia pseudotuberculosis (Yptb) is a multi-factorial process requiring several adhesins and host complement. When WT Yptb or a multiple adhesin mutant strain, ΔailΔinvΔyadA, colonized tissues to comparable levels, ΔailΔinvΔyadA translocated Yops into significantly fewer cells, demonstrating that these adhesins are critical for translocation into high numbers of cells. However, phagocytes were still selectively targeted for translocation, indicating that other bacterial and/or host factors contribute to this function. Complement depletion showed that complement-restricted infection by ΔailΔinvΔyadA but not WT, indicating that adhesins disarm complement in mice either by prevention of opsonophagocytosis or by suppressing production of pro-inflammatory cytokines. Furthermore, in the absence of the three adhesins and complement, the spectrum of cells targeted for translocation was significantly altered, indicating that Yersinia adhesins and complement direct Yop translocation into neutrophils during animal infection. In summary, these findings demonstrate that in infected tissues, Yersinia uses adhesins both to disarm complement-dependent killing and to efficiently translocate Yops into phagocytes.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas do Sistema Complemento/metabolismo , Fagócitos/metabolismo , Infecções por Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/metabolismo , Adesinas Bacterianas/genética , Animais , Proteínas do Sistema Complemento/genética , Camundongos , Fagócitos/microbiologia , Fagócitos/patologia , Transporte Proteico/genética , Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/patologia
15.
Cell Microbiol ; 16(2): 247-68, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24119087

RESUMO

A Yersinia pseudotuberculosis (Yptb) murine model of lung infection was previously developed using the serotype III IP2666NdeI strain, which robustly colonized lungs but only sporadically disseminated to the spleen and liver. We demonstrate here that a serotype Ib Yptb strain, IP32953, colonizes the lungs at higher levels and disseminates more efficiently to the spleen and liver compared with IP2666NdeI . The role of adhesins was investigated during IP32953 lung infection by constructing isogenic Δail, Δinv, ΔpsaE and ΔyadA mutants. An IP32953ΔailΔyadA mutant initially colonized but failed to persist in the lungs and disseminate to the spleen and liver. Yptb expressing these adhesins selectively bound to and targeted neutrophils for translocation of Yops. This selective targeting was critical for virulence because persistence of the ΔailΔyadA mutant was restored following intranasal infection of neutropenic mice. Furthermore, Ail and YadA prevented killing by complement-mediated mechanisms during dissemination to and/or growth in the spleen and liver, but not in the lungs. Combined, these results demonstratethat Ail and YadA are critical, redundant virulence factors during lung infection, because they thwart neutrophils by directing Yop-translocation specifically into these cells.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Neutrófilos/imunologia , Neutrófilos/microbiologia , Yersiniose/imunologia , Yersinia pseudotuberculosis/fisiologia , Adesinas Bacterianas/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , Modelos Animais de Doenças , Deleção de Genes , Interações Hospedeiro-Patógeno , Fígado/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Baço/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Yersiniose/microbiologia , Yersinia pseudotuberculosis/imunologia
16.
Antimicrob Agents Chemother ; 58(4): 2211-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24468789

RESUMO

The type III secretion system (T3SS) is a clinically important virulence mechanism in Pseudomonas aeruginosa that secretes and translocates effector toxins into host cells, impeding the host's rapid innate immune response to infection. Inhibitors of T3SS may be useful as prophylactic or adjunctive therapeutic agents to augment the activity of antibiotics in P. aeruginosa infections, such as pneumonia and bacteremia. One such inhibitor, the phenoxyacetamide MBX 1641, exhibits very responsive structure-activity relationships, including striking stereoselectivity, in its inhibition of P. aeruginosa T3SS. These features suggest interaction with a specific, but unknown, protein target. Here, we identify the apparent molecular target by isolating inhibitor-resistant mutants and mapping the mutation sites by deep sequencing. Selection and sequencing of four independent mutants resistant to the phenoxyacetamide inhibitor MBX 2359 identified the T3SS gene pscF, encoding the needle apparatus, as the only locus of mutations common to all four strains. Transfer of the wild-type and mutated alleles of pscF, together with its chaperone and cochaperone genes pscE and pscG, to a ΔpscF P. aeruginosa strain demonstrated that each of the single-codon mutations in pscF is necessary and sufficient to provide secretion and translocation that is resistant to a variety of phenoxyacetamide inhibitor analogs but not to T3SS inhibitors with different chemical scaffolds. These results implicate the PscF needle protein as an apparent new molecular target for T3SS inhibitor discovery and suggest that three other chemically distinct T3SS inhibitors interact with one or more different targets or a different region of PscF.


Assuntos
Proteínas de Transporte/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Transporte/genética , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade , Virulência/genética
17.
PLoS Pathog ; 8(8): e1002828, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876175

RESUMO

A highly conserved virulence plasmid encoding a type III secretion system is shared by the three Yersinia species most pathogenic for mammals. Although factors encoded on this plasmid enhance the ability of Yersinia to thrive in their mammalian hosts, the loss of this virulence plasmid does not eliminate growth or survival in host organs. Most notably, yields of viable plasmid-deficient Yersinia pseudotuberculosis (Yptb) are indistinguishable from wild-type Yptb within mesenteric lymph nodes. To identify chromosomal virulence factors that allow for plasmid-independent survival during systemic infection of mice, we generated transposon insertions in plasmid-deficient Yptb, and screened a library having over 20,000 sequence-identified insertions. Among the previously uncharacterized loci, insertions in mrtAB, an operon encoding an ABC family transporter, had the most profound phenotype in a plasmid-deficient background. The absence of MrtAB, however, had no effect on growth in the liver and spleen of a wild type strain having an intact virulence plasmid, but caused a severe defect in colonization of the mesenteric lymph nodes. Although this result is consistent with lack of expression of the type III secretion system by Wt Yptb in the mesenteric lymph nodes, a reporter for YopE indicated that expression of the system was robust. We demonstrate that the ATPase activity of MrtB is required for growth in mice, indicating that transport activity is required for virulence. Indeed, MrtAB appears to function as an efflux pump, as the ATPase activity enhances resistance to ethidium bromide while increasing sensitivity to pyocyanin, consistent with export across the inner membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Linfonodos/microbiologia , Mesentério/microbiologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo , Infecções por Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidade , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Linfonodos/metabolismo , Linfonodos/patologia , Mesentério/metabolismo , Mesentério/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Fatores de Virulência/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/patologia
18.
mBio ; 15(3): e0015924, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38364199

RESUMO

The rise in infections caused by multidrug-resistant (MDR) bacteria has necessitated a variety of clinical approaches, including the use of antibiotic combinations. Here, we tested the hypothesis that drug-drug interactions vary in different media, and determined which in vitro models best predict drug interactions in the lungs. We systematically studied pair-wise antibiotic interactions in three different media, CAMHB, (a rich lab medium standard for antibiotic susceptibility testing), a urine mimetic medium (UMM), and a minimal medium of M9 salts supplemented with glucose and iron (M9Glu) with three Gram-negative ESKAPE pathogens, Acinetobacter baumannii (Ab), Klebsiella pneumoniae (Kp), and Pseudomonas aeruginosa (Pa). There were pronounced differences in responses to antibiotic combinations between the three bacterial species grown in the same medium. However, within species, PaO1 responded to drug combinations similarly when grown in all three different media, whereas Ab17978 and other Ab clinical isolates responded similarly when grown in CAMHB and M9Glu medium. By contrast, drug interactions in Kp43816, and other Kp clinical isolates poorly correlated across different media. To assess whether any of these media were predictive of antibiotic interactions against Kp in the lungs of mice, we tested three antibiotic combination pairs. In vitro measurements in M9Glu, but not rich medium or UMM, predicted in vivo outcomes. This work demonstrates that antibiotic interactions are highly variable across three Gram-negative pathogens and highlights the importance of growth medium by showing a superior correlation between in vitro interactions in a minimal growth medium and in vivo outcomes. IMPORTANCE: Drug-resistant bacterial infections are a growing concern and have only continued to increase during the SARS-CoV-2 pandemic. Though not routinely used for Gram-negative bacteria, drug combinations are sometimes used for serious infections and may become more widely used as the prevalence of extremely drug-resistant organisms increases. To date, reliable methods are not available for identifying beneficial drug combinations for a particular infection. Our study shows variability across strains in how drug interactions are impacted by growth conditions. It also demonstrates that testing drug combinations in tissue-relevant growth conditions for some strains better models what happens during infection and may better inform combination therapy selection.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Camundongos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Interações Medicamentosas , Klebsiella pneumoniae , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
19.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585790

RESUMO

Antibiotic resistance, especially in multidrug-resistant ESKAPE pathogens, remains a worldwide problem. Combination antimicrobial therapies may be an important strategy to overcome resistance and broaden the spectrum of existing antibiotics. However, this strategy is limited by the ability to efficiently screen large combinatorial chemical spaces. Here, we deployed a high-throughput combinatorial screening platform, DropArray, to evaluate the interactions of over 30,000 compounds with up to 22 antibiotics and 6 strains of Gram-negative ESKAPE pathogens, totaling to over 1.3 million unique strain-antibiotic-compound combinations. In this dataset, compounds more frequently exhibited synergy with known antibiotics than single-agent activity. We identified a compound, P2-56, and developed a more potent analog, P2-56-3, which potentiated rifampin (RIF) activity against Acinetobacter baumannii and Klebsiella pneumoniae. Using phenotypic assays, we showed P2-56-3 disrupts the outer membrane of A. baumannii. To identify pathways involved in the mechanism of synergy between P2-56-3 and RIF, we performed genetic screens in A. baumannii. CRISPRi-induced partial depletion of lipooligosaccharide transport genes (lptA-D, lptFG) resulted in hypersensitivity to P2-56-3/RIF treatment, demonstrating the genetic dependency of P2-56-3 activity and RIF sensitization on lpt genes in A. baumannii. Consistent with outer membrane homeostasis being an important determinant of P2-56-3/RIF tolerance, knockout of maintenance of lipid asymmetry complex genes and overexpression of certain resistance-nodulation-division efflux pumps - a phenotype associated with multidrug-resistance - resulted in hypersensitivity to P2-56-3. These findings demonstrate the immense scale of phenotypic antibiotic combination screens using DropArray and the potential for such approaches to discover new small molecule synergies against multidrug-resistant ESKAPE strains.

20.
J Bacteriol ; 195(10): 2244-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475976

RESUMO

The plasmid-encoded type three secretion system (TTSS) of Yersinia spp. is responsible for the delivery of effector proteins into cells of the innate immune system, where these effectors disrupt the target cells' activity. Successful translocation of effectors into mammalian cells requires Yersinia to both insert a translocon into the host cell membrane and sense contact with host cells. To probe the events necessary for translocation, we investigated protein-protein interactions among TTSS components of the needle-translocon complex using a chemical cross-linking-based approach. We detected extracellular protein complexes containing YscF, LcrV, and YopD that were dependent upon needle formation. The formation of these complexes was evaluated in a secretion-competent but translocation-defective mutant, the YscFD28AD46A strain (expressing YscF with the mutations D28A and D46A). We found that one of the YscF and most of the LcrV and YopD cross-linked complexes were nearly absent in this mutant. Furthermore, the YscFD28AD46A strain did not support YopB insertion into mammalian membranes, supporting the idea that the LcrV tip complex is required for YopB insertion and translocon formation. However, the YscFD28AD46A strain did secrete Yops in the presence of host cells, indicating that a translocation-competent tip complex is not required to sense contact with host cells to trigger Yop secretion. In conclusion, in the absence of cross-linkable LcrV-YscF interactions, translocon insertion is abolished, but Yersinia still retains the ability to sense cell contact.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Yersinia pseudotuberculosis/metabolismo , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Imunoprecipitação , Proteínas Citotóxicas Formadoras de Poros/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA