RESUMO
A dual stimulus-responsive mPEG-SS-PLL(15)-glutaraldehyde star (mPEG-SS-PLL(15)-star) catiomer is developed and biologically evaluated. The catiomer system combines redox-sensitive removal of an external PEG shell with acid-induced escape from the endosomal compartment. The design rationale for PEG shell removal is to augment intracellular uptake of mPEG-SS-PLL(15)-star/DNA complexes in the presence of tumor-relevant glutathione (GSH) concentration, while the acid-induced dissociation is to accelerate the release of genetic payload following successful internalization into targeted cells. Size alterations of complexes in the presence of 10 mM GSH suggest stimulus-induced shedding of external PEG layers under redox conditions that intracellularly present in the tumor microenvironment. Dynamic laser light scattering experiments under endosomal pH conditions show rapid destabilization of mPEG-SS-PLL(15)-star/DNA complexes that is followed by facilitating efficient release of encapsulated DNA, as demonstrated by agarose gel electrophoresis. Biological efficacy assessment using pEGFP-C1 plasmid DNA encoding green fluorescence protein and pGL-3 plasmid DNA encoding luciferase as reporter genes indicate comparable transfection efficiency of 293T cells of the catiomer with a conventional polyethyleneimine (bPEI-25k)-based gene delivery system. These experimental results show that mPEG-SS-PLL(15)-star represents a promising design for future nonviral gene delivery applications with high DNA binding ability, low cytotoxicity, and high transfection efficiency.
Assuntos
Reagentes de Ligações Cruzadas/química , Dissulfetos/química , Técnicas de Transferência de Genes , Vetores Genéticos/química , Iminas/química , Polilisina/química , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/síntese química , Reagentes de Ligações Cruzadas/farmacologia , Dissulfetos/farmacologia , Vetores Genéticos/síntese química , Vetores Genéticos/farmacologia , Glutaral/química , Glutaral/farmacologia , Células HEK293 , Células HeLa , Humanos , Iminas/farmacologia , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polilisina/genética , Propriedades de SuperfícieRESUMO
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1beta (PGC-1beta) is believed to control mitochondrial oxidative energy metabolism by activating specific target transcription factors including estrogen-related receptors and nuclear respiratory factor 1, yet its physiological role is not yet clearly understood. To define its function in vivo, we generated and characterized mice lacking the functional PGC-1beta protein [PGC-1beta knockout (KO) mice]. PGC-1beta KO mice are viable and fertile and show no overt phenotype under normal laboratory conditions. However, the KO mice displayed an altered expression in a large number of nuclear-encoded genes governing mitochondrial and metabolic functions in multiple tissues including heart, skeletal muscle, brain, brown adipose tissue, and liver. In contrast to PGC-1alpha KO mice that are reportedly hyperactive, PGC-1beta KO mice show greatly decreased activity during the dark cycle. When acutely exposed to cold, the KO mice developed abnormal hypothermia and morbidity. Furthermore, high-fat feeding induced hepatic steatosis and increased serum triglyceride and cholesterol levels in the KO mice. These results suggest that PGC-1beta in mouse plays a nonredundant role in controlling mitochondrial oxidative energy metabolism.
Assuntos
Ritmo Circadiano/fisiologia , Fígado Gorduroso/metabolismo , Mitocôndrias/metabolismo , Termogênese/fisiologia , Transativadores/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Basal , Temperatura Baixa , Dieta , Regulação para Baixo/genética , Fígado Gorduroso/induzido quimicamente , Perfilação da Expressão Gênica , Marcação de Genes , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/deficiência , Transativadores/genética , Fatores de TranscriçãoRESUMO
Macrophage activation by the proinflammatory cytokine interferon-gamma (IFN-gamma) is a critical component of the host innate response to bacterial pathogenesis. However, the precise nature of the IFN-gamma-induced activation pathway is not known. Here we show using genome-wide expression and chromatin-binding profiling that IFN-gamma induces the expression of many nuclear genes encoding mitochondrial respiratory chain machinery via activation of the nuclear receptor ERR alpha (estrogen-related receptor alpha, NR3B1). Studies with macrophages lacking ERR alpha demonstrate that it is required for induction of mitochondrial reactive oxygen species (ROS) production and efficient clearance of Listeria monocytogenes (LM) in response to IFN-gamma. As a result, mice lacking ERR alpha are susceptible to LM infection, a phenotype that is localized to bone marrow-derived cells. Furthermore, we found that IFN-gamma-induced activation of ERR alpha depends on coactivator PGC-1 beta (peroxisome proliferator-activated receptor gamma coactivator-1 beta), which appears to be a direct target for the IFN-gamma/STAT-1 signaling cascade. Thus, ERR alpha and PGC-1 beta act together as a key effector of IFN-gamma-induced mitochondrial ROS production and host defense.
Assuntos
Proteínas de Transporte/metabolismo , Interferon gama/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Receptores de Estrogênio/metabolismo , Animais , Sequência de Bases , Proteínas de Transporte/genética , DNA/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas de Ligação a RNA , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/genética , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos , Receptor ERRalfa Relacionado ao EstrogênioRESUMO
The metabolic syndrome is a collection of obesity-related disorders. The peroxisome proliferator-activated receptors (PPARs) regulate transcription in response to fatty acids and, as such, are potential therapeutic targets for these diseases. We show that PPARdelta (NR1C2) knockout mice are metabolically less active and glucose-intolerant, whereas receptor activation in db/db mice improves insulin sensitivity. Euglycemic-hyperinsulinemic-clamp experiments further demonstrate that a PPARdelta-specific agonist suppresses hepatic glucose output, increases glucose disposal, and inhibits free fatty acid release from adipocytes. Unexpectedly, gene array and functional analyses suggest that PPARdelta ameliorates hyperglycemia by increasing glucose flux through the pentose phosphate pathway and enhancing fatty acid synthesis. Coupling increased hepatic carbohydrate catabolism with its ability to promote beta-oxidation in muscle allows PPARdelta to regulate metabolic homeostasis and enhance insulin action by complementary effects in distinct tissues. The combined hepatic and peripheral actions of PPARdelta suggest new therapeutic approaches to treat type II diabetes.
Assuntos
Glucose/metabolismo , Insulina/metabolismo , PPAR delta/metabolismo , Animais , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Intolerância à Glucose , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , PPAR delta/agonistas , PPAR delta/deficiência , PPAR delta/genética , Via de Pentose Fosfato , Transcrição Gênica/genéticaRESUMO
Significant attention has focused on the role of low-density lipoprotein (LDL) in the pathogenesis of atherosclerosis. However, recent advances have identified triglyceride-rich lipoproteins [e.g., very LDL (VLDL)] as independent risk predictors for this disease. We have previously demonstrated peroxisome proliferator-activated receptor (PPAR)delta, but not PPARgamma, is the major nuclear VLDL sensor in the macrophage, which is a crucial component of the atherosclerotic lesion. Here, we show that, in addition to beta-oxidation and energy dissipation, activation of PPARdelta by VLDL particles induces key genes involved in carnitine biosynthesis and lipid mobilization mediated by a recently identified TG lipase, transport secretion protein 2 (also named desnutrin, iPLA2zeta, and adipose triglyceride lipase), resulting in increased fatty acid catabolism. Unexpectedly, deletion of PPARdelta results in derepression of target gene expression, a phenotype similar to that of ligand activation, suggesting that unliganded PPARdelta suppresses fatty acid utilization through active repression, which is reversed upon ligand binding. This unique transcriptional mechanism assures a tight control of the homeostasis of VLDL-derived fatty acid and provides a therapeutic target for other lipid-related disorders, including dyslipidemia and diabetes, in addition to coronary artery disease.