Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Zool ; 18(1): 60, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863212

RESUMO

RNA interference (RNAi) has emerged as a powerful tool for knocking-down gene function in diverse taxa including arthropods for both basic biological research and application in pest control. The conservation of the RNAi mechanism in eukaryotes suggested that it should-in principle-be applicable to most arthropods. However, practical hurdles have been limiting the application in many taxa. For instance, species differ considerably with respect to efficiency of dsRNA uptake from the hemolymph or the gut. Here, we review some of the most frequently encountered technical obstacles when establishing RNAi and suggest a robust procedure for establishing this technique in insect species with special reference to pests. Finally, we present an approach to identify the most effective target genes for the potential control of agricultural and public health pests by RNAi.

2.
Pestic Biochem Physiol ; 176: 104870, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119215

RESUMO

RNA interference (RNAi) is a promising, selective pest control technology based on the silencing of targeted genes mediated by the degradation of mRNA after the ingestion of double-stranded (ds) RNA. However, the identification of the best target genes remains a challenge, because large scale screening is only feasible in lab model systems and it remains unclear, to what degree such data can be transferred to pest species. Here, we report on our efforts to transfer target genes found in a lab model to the mustard leaf beetle, Phaedon cochleariae. The mustard leaf beetle can be reared easily and resource-efficient in large quantities all year round and is an established chrysomelid pest for higher throughput screening approaches in the crop protection industry. Mustard leaf beetle transcriptome sequencing and assembly revealed genes orthologous to those previously described as highly efficient RNAi targets in the model beetle Tribolium castaneum. First, we observed mortality after injection of dsRNA targeting the respective orthologous genes in 2nd instar mustard beetle larvae. Next, we adopted a robust, automated multi-well plate foliar RNAi screening procedure with 2nd instar larvae of the mustard leaf beetle to assess those genes. Indeed, foliar application and oral uptake of dsRNA targeting the same genes resulted in larval mortality as well. The most effective target genes with a strong (lethal) phenotype - at dsRNA doses as low as 300 ng/leaf disc (equal to 9.6 g/ha) - were srp54k, rop, αSNAP, rpn7 and rpt3. Rather limited effects were observed after application of dsRNA targeting cactus, shibire and PP-α, though they had previously been shown to be highly lethal in red flour beetle. Importantly, our experiments demonstrated that the overall efficacy pattern obtained after oral dsRNA application was well correlated with the results obtained after dsRNA injection. RT-qPCR confirmed significant target gene knock-down after normalization by employing three reference genes shown to be stably expressed across life stages. In summary, several RNAi targeted genes elicited a strong lethal phenotype and significant target gene knock-down after feeding, suggesting P. cochleariae as a potential coleopteran screening model for foliarly applied exogenous RNAi.


Assuntos
Besouros , Tribolium , Animais , Besouros/genética , Larva , Mostardeira , Interferência de RNA , RNA de Cadeia Dupla/genética , Tribolium/genética
3.
Pestic Biochem Physiol ; 166: 104569, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448424

RESUMO

In recent years, substantial effort was spent on the exploration and implementation of RNAi technology using double-stranded RNA (dsRNA) for pest management purposes. However, only few studies investigated the geographical variation in RNAi sensitivity present in field-collected populations of the targeted insect pest. In this baseline study, 2nd instar larvae of 14 different European populations of Colorado potato beetle (CPB), Leptinotarsa decemlineata, collected from nine different countries were exposed to a foliarly applied diagnostic dose of dsactin (dsact) to test for possible variations in RNAi response. Only minor variability in RNAi sensitivity was observed between populations. However, the time necessary to trigger a dsRNA-mediated phenotypic response varied significantly among populations, indicated by significant differences in mortality figures obtained five days after treatment. An inbred German laboratory reference strain D01 and a Spanish field strain E02 showed almost 100% mortality after foliar exposure to 30 ng dsactin (equal to 0.96 g/ha), whereas another Spanish strain E01 was least responsive and showed only 30% mortality. Calculated LD50-values for foliarly applied dsact against strains D01 (most sensitive) and E01 (least sensitive) were 9.22 and 68.7 ng/leaf disc, respectively. The variability was not based on target gene sequence divergence or knock-down efficiency. Variability in expression of the core RNAi machinery genes dicer (dcr2a) and argonaute (ago2a) was observed but did not correlate with sensitivity. Interestingly, RT-qPCR data collected for all strains revealed a strong correlation between the expression level of dcr2a and ago2a (r 0.93) as well as ago2a and stauC (r 0.94), a recently described dsRNA binding protein in Coleopterans. Overall, this study demonstrates that sensitivity of CPB to sprayable RNAi slightly varies between strains but also shows that foliar RNAi as a control method works against all tested CPB populations collected across a broad geographic range in Europe. Thus, underpinning the potential of RNAi-based CPB control as a promising component in integrated pest management (IPM) and resistance management programs.


Assuntos
Besouros , Solanum tuberosum , Animais , Larva , Interferência de RNA , RNA de Cadeia Dupla
4.
Curr Res Insect Sci ; 2: 100037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003261

RESUMO

Spodoptera frugiperda (fall armyworm) is a highly destructive invasive pest that feeds on numerous crops including maize and rice. It has developed sophisticated mechanisms to detoxify xenobiotics such as secondary plant metabolites as well as manmade insecticides. The aim of the study was to explore the detoxification response to plant secondary metabolites and insecticides employing a S. frugiperda Sf9 cell model exposed to indole 3-carbinol (I3C) and methoprene. The cell Inhibitory Concentration 50 (IC50) for these molecules was determined and IC10, IC20 and IC30 doses were used to monitor the induction profiles of detoxification genes. Cytochrome P450 monooxygenases (P450s) of the CYP9A subfamily were the most inducible genes of the seven examined. Our results also showed the induction of the transcription factor Cap'n'collar isoform C (CncC). Transient transformation of Sf9 cells overexpressing CncC and its partner muscle aponeurosis fibromatosis (Maf) induces overexpression of CYP4M14, CYP4M15, CYP321A9 and GSTE1 while CYP9As were not induced. Next, we determined the capacity of recombinantly expressed CYP9A30, CYP9A31 and CYP9A32 to interact with methoprene and I3C. Fluorescence-based biochemical assays revealed an interaction of methoprene with functionally expressed CYP9A30, CYP9A31 and CYP9A32 whereas almost no interaction was detected for I3C, suggesting the ability of CYP9As to metabolize methoprene. Our results showed that Sf9 cells could be a useful model to decipher detoxification pathways of S. frugiperda.

5.
Insects ; 12(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442324

RESUMO

Fall armyworm (FAW), Spodoptera frugiperda, is a major pest of maize in the Americas and recently invaded the Eastern hemisphere. It was first detected in India in 2018 and is considered a major threat to maize production. FAW control largely relies on the application of chemical insecticides and transgenic crops expressing Bacillus thuringiensis insecticidal proteins. Assessing FAW resistance and insecticide susceptibility is a cornerstone to develop sustainable resistance management strategies. In this study, we conducted more than 400 bioassays to assess the efficacy of nine insecticides from seven mode-of-action classes against 47 FAW populations collected in 2019 and 2020 across various geographical areas in India. The resistance status of the field-collected populations was compared to an Indian population sampled in 2018, and an insecticide susceptible reference population collected in 2005 in Brazil. Low to moderate resistance levels were observed for thiodicarb, chlorpyriphos, deltamethrin, chlorantraniliprole and flubendiamide in several populations (including the reference population collected in 2018). The highest resistance ratios were observed for deltamethrin which likely compromises recommended label rates for pyrethroid insecticides in general. Our data provide a useful baseline for future FAW resistance monitoring initiatives and highlight the need to implement insecticide resistance management strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA