Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 19(4): 1375-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26080389

RESUMO

Connectivity information derived from diffusion MRI can be used to parcellate the cerebral cortex into anatomically and functionally meaningful subdivisions. Acquisition and processing parameters can significantly affect parcellation results, and there is no consensus on best practice protocols. We propose a novel approach for evaluating parcellation based on measuring the degree to which parcellation conforms to known principles of brain organization, specifically cortical field homogeneity and interhemispheric homology. The proposed metrics are well behaved on morphologically generated whole-brain parcels, where they correctly identify contralateral homologies and give higher scores to anatomically versus arbitrarily generated parcellations. The measures show that individual cortical fields have characteristic connectivity profiles that are compact and separable, and that the topological arrangement of such fields is strongly conserved between hemispheres and individuals. The proposed metrics can be used to evaluate the quality of parcellations at the subject and group levels and to improve acquisition and data processing for connectivity-based cortical parcellation.


Assuntos
Córtex Cerebral/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
2.
IEEE Trans Med Imaging ; 33(4): 925-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24710161

RESUMO

Multi-voxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data is an emerging approach for probing the neural correlates of cognition. MVPA allows cognitive states to be modeled as distributed patterns of neural activity and classified according to stimulus conditions. In practice, building a robust, generalizable classification model can be challenging because the number of voxels (features) far exceeds the number of stimulus instances/data observations. To avoid model overfitting, there is a need to select informative voxels before building a classification model. In this paper, we propose a robust feature (voxel) selection framework using mutual information (MI) and partial least square regression (PLS) to establish an informativeness index for prioritizing selection of voxels based on the degree of their association to the experimental conditions. We evaluated the robustness of our proposed framework by assessing performance of standard classification algorithms, when combined with our feature selection approach, in a publicly-available fMRI dataset of object-level representation widely used to benchmark MVPA performance (Haxby, 2001). The computational results suggest that our feature selection framework based on MI and PLS drastically improves the classification accuracy relative to those previously reported in the literature. Our results also suggest that highly informative voxels may provide meaningful insight into the functional-anatomic relationship of brain activity and stimulus conditions.


Assuntos
Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Bases de Dados Factuais , Humanos , Análise dos Mínimos Quadrados , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA